Programmer’s Guide

HP 8711B/12B/13B/14B
RF Network Analyzers

Notice

Firmware Revision

HP part nurmmber: 08713-90004
Printed in USA September, 1995

The information contained in this document is subject 1o change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this material,
including but not limited to. the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall ¢t be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

This manual documents analyzers with firmware revisions B.03.50 and above.
Some features (and therefore commands) will not be available in analyzers
with earlier firmware revisions. For full compatibility, vou can upgrade your
firmware to the latest version. Contact your nearest Hewlett-Packard sales or
service office for information.

©Copyright Hewlett-Packard Company 1995

All Rights Reserved. Reproduction, adaptation, or transiation without prior
written permission is prohibited, except as allowed under the copyright laws.
1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799 USA

HP-IB Programming

This document is an introduction to programming your analyzer over the
Hewlett-Packard Interface Bus (HP-IB). Ifs purpose is to provide concise
information about the operation of the instrument under HP-IB control.

It provides some background information on the HP-IB and a tutorial
introduction using programming examples to demonstrate the remote
operation of the HP 8711. The examples are provided on two disks that are
included with this guide. Both disks contain the same examples written in
HP BASIC; only the disk format is different. These programs can run on the
analyzer’s internal controller (Option 1C2) or on an external controller.

o Example Programs Disk — DOS Format : part number 08712-10001
o Example Programs Disk — LIF Format : part number 08712-10002

You should become familiar with the operation of your network analyzer
before controlling it over HP-IB. This document is not intended to teach
programming or to discuss HP-IB theory except at an introductory level.
Related information can be found in the following references. Contact the
nearest HP sales office for ordering information. A list of HP sales and service
offices can be found in the “Specifications and Characteristics” chapter of the
User’s Guide.
¢ Information on making measurements with the analyzer is available in the
analyzer’s User’s Guide.

+ Information on HP Instrument BASIC is available in the HP mstrument
BASIC User’s Handbook.

o Information on HP BASIC programming is available in the manual set for
the BASIC revision being used. For example: BASIC 6.0 Programming
Techniques and BASIC 6.0 Language Reference.

¢ Information on using the HP-IB is available in the Tutorial Description of
the Hewlett-Packard Iterface Bus (HP literature no. 5021-1927).

Contents

1. Introduction to HP-IB Programming

Bus Structure Lo 1-4
DataBus L0 1-4
Handshake Lines 1-4

Sending Commands 1-6

HP-IB Requirements . e e e e e e e e 1-7

Interface Capabilities 1-8

Programming Fundamentals . 1-9
Controller Capabilities . 1-9
Response to Bus Management Commands . 1-10
Message Exchange 113

2. Synchronizing the Analyzer and a Controller

Overlapped Commands 2-3
3. Passing Control
4. Data Types and Encoding

Data Types 4-3
Numeric Data« 4-3
Character Data 4-4
String Data 4-4
ExpressionData 4-4
Block Data C e e 4-5

Data Encoding for Large Data Transfers 4.7
ASCII Encoding 4-8
Binary Encoding 4-8
Byte Swapping L. 4-9

5. Using Status Registers .

General Status Register Model 5-3
Condition Register 5-4
Transition Registers 5-4
Event Register 5-4
Enable Register 5-5

How to Use Registers 5-6

Contents-1

'
)

Query Errors

The Service Request Process
Generating a Service Request

The Analyzer’s Status Register Sets
Status Byte Ce
Device Status Reglster Set
Limit Fail Register Set . .
Questionable Status Register Set
Standard Event Status Register Set
Measuring Status Register Set
Averaging Status Register Set .
Operational Status Register Set .
STATus:PRESet Settings . :
Analyzer Register Set Summary .

6. Trace Data Transfers
Querying the Measurement Trace Using BASIC
$Smith Chart and Polar Formats .)

Querying the Measurement Trace Using SICL .
Using Binary Data Encoding .

Trace Data Transfer Sizes .
Transferring Data with IBASIC
Taking Sweeps Ce
CALC:DATA? versus TRACE DATA7
Querying Single Data Points Using Markers .
Accessing Other Measurement Arrays
Applying Gain Correction Using the Memory I -ace
Performing Your Own Data Processing
Downloading Trace Data Using Binary Encoding
Internal Measurement Arrays

Raw Data Arrays

Ratio Calculations .

Error Correction .

Error Coeflicient Arrays

Averaging .

Corrected Data \rra\s .

Corrected Memory Arrays

Trace Math Operation

2 Electrical Delay .

IRt
7

DO DD DD = bt et bt bt et s

(IRl

(SIS TN} Qljl (S]] CI)I (]
N = OWWO-ID®ULL Do O 0

Ql)u Q‘JI

> P
e Qo

e e

—_ Y
— OO~ Ot

qno:qaqalmo:o:o:?‘omow
1 i t] 1
[\3[\')[\3[\')[\'}»—4»—4»——-»‘(\)’,

Oy
7

S
e
Lo LW Lo O O W™ L

Contents-2

Transform (Option 100 only)

Formatting
Formatted Arrays

Offset and Scale

Using Graphics

Window Geometry

The Graphics Buffer . . .

Example Programs

Configuring Measurements
SETUP Example Program . . .
LIMITEST Example Program . .

Query Errors

Transfer of Data to/from the Analyzer

MARKERS Example Program

S@SMITHMKR Example Program . . .

ASCDATA Example Program

REALDATA Example Program . . .

INTDATA Example Program . .
Calibration Ce

TRANCAL Example Progr

REFLCAL Example Program .

LOADCALS Example Program

CALKIT Example Program . .

Instrument State and Save/Recall

LEARNSTR Example Program
SAVERCL Example Program . .
Hardcopy Control

PRINTPLT Example Program
PASSCTRL Example Program
FAST_PRT Example Program

Service Request

SRQ Example Program

File Transfer Over HP-IB .

GETFILE Example Program
PUTFILE Example Program

Customized Display

GRAPHICS Example Program

8-30
8-33
8-34
8-36
8-40
8-46
8-48
8-49
8-52
8-55
8-56
8-59
8-62
8-64
8-65
8-69
8-70
8-72
8-74
8-75

Contents-3

Query Errors

9.

10.

11.
12.

13.

14.

Front Panel Keycodes

Introduction to SCPI
The Command Tree . ..
Sending Multiple Commands
Command Abbreviation
Implied Mnemonics
Parameter Types
Numeric Parameters .
Character Parameters
Booiean Parameters
String Parameters .
Block Parameters
Syntax Summary . . .

[EEE 488.2 Common Com‘m;.m;is'

Menu Map with SCPI Commands
SCPI Command Summary

SCPI Conformance Information
SCPI Standard Commands .
Instrument Specific Commands

SCPI Error Messages
Command Errors
Execution Errors
Device-Specific Errors
Query Errors

Index

10-3
10-7
10-8
10-9
10-10
10-10
10-11

1012

10-13
10-14
10-15
10-17

13-3
13-8

14-3
14-7
14-12
14-14

e Contents-4

Figures

5-1. General Status RegisterModel 5-3
5-2. Flow of information within a registerset 5-5
5-3. Generating a Service Request e 5-8
5-4. Analyzer Register Sets 5-11
5-5. The Status Byte Register Set e 5-12
5-6. The Standard Event Status Register Set . . . - ¥
6-1. Numeric Data Flow Through the Network Analyzer 6-2
6-2. Numeric Data Flow Through the Network Analyzer 6-14
6-3. Numeric Data Flow Through the Network Analyzer 6-21
10-1. Measurement and Data Flow of the Analyzer 10-3
10-2. Partial Diagram of the CALCulate Subsystem Command Tree . 10-6
10-3. SCPI Command Syntax 10-15
Tables
6-1. Typical Trace Transfer Times(ms) 6-7
6-2. Size of Trace Data Transfers (in Bytes) Usmg the TRACE:DATA
SCPI Command 6-9
6-3. Typical Trace Transfer Times (ms) 6-10
6-4. Raw Data Arravs o 6-22
6-5. Error Coefficient Arrays e 6-24
12-1. Writeable Ports 12-10
12-2. Readable Ports o0 12-11
14-1. SCPI Command Errors 14-4
14-2. SCPI Execution Errors C e 14-8
14-3. SCPI Device-SpecificErrors 14-13
14-4. SCPIQuery Errors 14-14

Contents-5

Contents

Introduction to HP-IB
Programming

Introduction to HP-IB Programming

HP-IB — the Hewlett-Packard Interface Bus — is a high-performance bus

that allows individual instruments and computers to be cornbined into
integrated test systems. The bus and its associated interface operations are
defined by the JEEE 488.1 standard. The IEEL 488.2 standard defines the
interface capabilities of instruments and controllers in a measurement system,
including some frequently used commands.

HP-IB cables provide the physical link between devices on the bus. There are
eight data lines on each cable that are used to send data from one device to
another. Devices that send data over these lines are called Talkers. Listeners
are devices that receive data over the same lines. There are also five control
lines on each cable that are used to manage traffic on the data lines and to
control other interface operations. Controllers are devices that use these
control lines to specify the talker and listener in a data exchange. When an
HP-IB system contains more that one device with controller capabilities,

only one of the devices is allowed to control data exchanges at any given
time. The device currently controlling data exchanges is called the Active
Controller. Also, only one of the controller-capable devices can be designated
as the System Controller, the one device that can take control of the bus
even if it is not the active controller. The network analyzer can act as a
talker, listener, active controller or system controller at different times.

HP-IB addresses provide a way to identify devices on the bus. The active
controller uses HP-IB addresses to specify which device talks and which
device listens during a data exchange. This means that each device's address
must be unique. A device’s address is set on the device itself, using either a
front-panel key sequence or a rear-panel switch.

To set the HP-IB address on the analyzer use the softkeys located in the

(sYSTEM OPTIONS) HP-IB menu. The factory default address for the analyzer
is 16.

1-2

Introduction to HP-1B Programmin:

NOTE

Throughout this manual, the following conventions are used:

Square hrackets {[]) are used to enclose a keyword that is optional or implied when
programming the command; that is, the instrument will process the command to have the same
gffect whether the option node is omitted or not.

Parameter types (< >) are distinguished by enclosing the type name in angle brackets.

A vertical bar (}) can be read as “or” and is used to separate alternative parameter options.

Bus Structure

Data Bus

The data bus consists of eight lines that are used to transfer data from one
device to another. Programming commands and data sent on these lines is
typically encoded in the ASCII format, although binary encoding is often used
to speed up the transfer of large arrays. Both ASCI and binary data formats
are available to the analyzer. In addition, every nyte transferred over HP-1B
undergoes a handshake to ensure valid data.

Control Lines

Handshake Lines

A three-line handshake scheme coordinates the transfer of data between
talkers and listeners. This technique forces data transfers to occur at the
speed of the slowest device, and ensures data integrity in multiple listener
transfers. With most computing controllers and instruments, the handshake is
performed automatically, which makes it transparent to the programmer.

The data bus also has five control lines that the controller uses both to send
bus commands and to address devices:

IFC Interface Clear. Only the system controller uses this line.
When this line is true (low) all devices (addressed or not)
unaddress and go to an idle state.

ATN Attention. The active controller uses this line to define
whether the information on the data bus is a command or is
data. When this line is true (low) the bus is in the command
mode and the data lines carry bus commands. When :his
line is false (high) the bus is in the data mode and the data
lines carry device-dependent instructions or data.

1-4

SRQ

REN

EOI

Introduction to HP-IB Programming
Bus Structure

Service Request. This line is set true (low) when a

device requests service: the active controller services the
requesting device. The analyzer can be enabled to pull the
SRQ line for a variety of reasons.

Remote Enable. Only the system controller uses this line.
When this line is set true (low) the bus is in the remote
mode and devices are addressed either to listen or talk.
When the bus is in remote and a device is addressed, the
device receives instructions from HP-IB rather than from its
front panel (pressing the Return to: Local softkey return:
the device to front panel operation). When this line is set
false (high) the bus and all devices return to local operation.

End or Identify. This line is used by a talker to indicate the
last data byte in a multiple byte transmission, or by an
active controller to initiate a parallel poll sequence. The
analyzer recognizes the EQI line as a terminator and it pulls
the EOI line with the last byte of a message output (data,
markers, plots, prints, error messages). The analyzer does
not respond to parallel poll.

1-5

Sending Commands

Commands are sent over the HP-IB via a controller’s language system,
such as IBASIC, QuickBASIC or C. The keywords used by a controller to
send HP-IB commands vary among systems. When determining the correct
keywords to use, keep in mind that there are two different kinds of HP-IB
commands:

e Bus management commands, which control the HP-IB interface.
¢ Device commands, which control analyzer functions.

Language systems usually deal differently with these two kinds of HP-IB
commands. For example, HP BASIC uses a unique keyword to send each bus
management command, but always uses the keyword OUTPUT to send device
commands.

The following example shows how to send a typical device command:
OUTPUT 716;"CALCULATE :MARKER : MAXIMUM"

This sends the command within the quotes (CALCULATE : MARKER : MAXIMUN)
to the HP-IB device at address 716. If the device is an analyzer, the command
instructs the analyzer to set a marker to the maximum point on the data
trace.

1-6

HP-IB Requirements

\
S

Number of Interconnected 15 maximum

Devices:

Interconnection 20 meters maxiraum or 2 meters per device,

Path/Maximum Cable Length: whichever is less.

Message Transfer Scheme: Byte serial/ bit parallel asynchronous data
transfer using a 3-line handshake system.

Data Rate: Maximum of 1 megabyte per second over
limited distances with tri-state drivers.
Actual data rate depends on the transfer rate
of the slowest device involved.

Address Capability: Primary addresses: 31 talk, 31 listen. A
maximum of 1 talker and 14 listeners at one
time.

Multiple Controller Capability: In systems with more than one controller
(like the analyzer system), only one can
be active at a time. The active controller
can pass control to another controller, but
only the system controller can assume
unconditional control. Only one system
controller is allowed. The system controller
is hard-wired to assume bus control after a
power failure.

1-7

~ Interface Capabilities

The analyzer has the following interface capabilities, as defined by the
IEEE 488.1 standard:

SH1 full Source handshaks capability

AH1 full Acceptor handsheke capability

T6 basic Talker, Serial Poll, no Talk Only, unaddress if MLA
TED no Extended Talker capebility

L4 ‘ basic Listener, no Listen Only, unaddress if MTA

LEO no Extended Listener capability

SR1 full Service Reguest capability

RL1 full Remota/local capability

0CY fult Device Clear capabiiity

1 System Controller capability

C2 send IFC and take charge Controller capability

€3 send REN Controller capability

cat respond to SAQ

cel send IFC, receive control, pass control, pass control to salf
122 sand IF messages, receive control, pass controf

£2 tri-state drivers

o full device trigger capability

PPO no parallel poll capehility

1 anly when an HP Instrument BASIC program is running

2 only when an HP Instrument BASIC program is not running

1-8

Programming Fundamentals

This section includes specific information for programming your network
analyzer. It includes how the analyzer interacts with a controller, how data
is transferred between the analyzer and a controller, and how to use the
analyzer’s status register structure to generate service requests.

Controller Capabilities

The analyzer can be configured as an HP-IB system controller or as

a talker/listener alyzer, select either
the System Con gtener softkey in the
(SYSTEM OPTIONS) HF

The analyzer is not usually configured as the system controller unless it is the
only controller on the bus. This setup would be used if the analyzer only
needed to control printers or plotters. It would also be used if HP Instrument
BASIC was being used to control other test equipment.

When the analyzer is used with another controller on the bus, it is usually
configured as a talker/listener. In this configuration, when the analyzer is
passed control it can function as the active controller.

1-9

llllllllll (LIRS I N T Ay ¥ tlUglulHHllHu

Programming Fundamentals

Response to Bus Management Commands

The HP-IB contains an attention (ATN) line that determines whether

the interface is in command mode or data mode. When the interface is

in command mode (ATN TRUE) a controller can send bus management
commands over the bus. Bus management commands specify which devices
on the interface can talk (send data) and which can listen (receive data).
They also instruct devices on the bus, either individually or collectively, to
perform a particular interface operation.

This section describes how the analyzer responds to the HP-IB bus
management commands. The commands themselves are defined by the
[EEE 488.1 standard. Refer to the documentation for your controller’s
language system to determine how to send these commands.

Device Clear (DCL) When the analyzer receives this command, it:

e Clears its input and output queues.

e Resets its cormmand parser (so it is ready to receive a new program
message).

e Cancels any pending *0PC command or query.

The command does not affect:

e Front panel operation.

e Any analyzer operations in progress (other than those already mentioned).

e Any instrument settings or registers (although clearing the output queue
may indirectly affect the Status Byte’s Message Available (MAV) bit).

Go To Local (GTL) This command returns the analyzer to local (front-panel) control. All keys on
the analyzer’s front-panel are enabled.

Interface Clear (IFC) This command causes the analyzer to halt all bus activity. It discontinues
any input or output, although the input and output queues are not cleared.
If the analyzer is designated as the active controller when this command is
received, it relinquishes control of the bus to the system controller. If the
analyzer is enabled to respond to a Serial Poll it becomes Serial Poll disabled.

1-10

Local Lockout {LLO)

Parallel Poll

Remote Enable {REN)

Introduction to HP-IB Pragrammin
Progremming Fundamental:

This command causes the analyzer to enter the local lockout mode, regardle:
of whether it is in the local or remote mode. The analyzer only leaves the
local lockout mode when the HP-IB’s Remote Enable (REN) line is set FALSE

Local Lockout ensures that the analyzer’s remote softkey menu (including tt

Return to LOCAL softkey) is disabled when the analyzer is in the remote

mode. When the key is enabled, it allows a front-panel operator to return tt
analyzer to local mode, enabling all other front-panel keys. When the key is
disabled, it does not allow the front-panel operator to return the analyzer to
local mode.

The analyzer ignores all of the following parallel poll commands:

Parallel Poll Configure (PPC).
Parallel Poll Unconfigure (PPU).
Parallel Poll Enable (PPE).
Parallel Poll Disable (PPD).

REN is a single line on the HP-IB. When it is set TRUE, the analyzer will
enter the remote mode when addressed to listen. It will remain in remote
mode until it receives the Go to Local (GTL) command or until the REN line
set FALSE.

When the analyzer is in remote mode and local lockout mode, all front panel
keys are disabled. When the analyzer is in remote mode but not in local
lockout mode, all front panel keys are disabled except for the softkeys. The
remote softkey menu includes seven keys hat are ‘available for use by a
program. The eighth softkey is the Return to- LOCAL key which allows a
front-panel operator to return the analyzer to local mode, enabling all other
front-panel keys.

1-1

Introduction ta HP-{B Programming
Programming Fundamentals

Selected Device Clear The analyzer responds to this command in the same way that it responds to
(SDC) the Device Clear (DCL) command.

When the analyzer receives this command it:

e Clears its input and output queues.

e Resets its command parser (so it is ready to receive a new program
message).

e Cancels any pending *0PC command or query.

The command does not affect:

e Front-panel operation.

e Any analyzer operations in progress (other than those already mentioned).

e Any analyzer settings or registers (although clearing the output queue may
indirectly affect the Status Byte's MAV bit).

Serial Poll The analyzer responds to both of the serial poll commands. The Serial Poll
Enable (SPE) command causes the analyzer to enter the serial poll mode.
While the analyzer is in this mode, it sends the contents of its Status Byte
register to the controller when addressed to talk.

When the Status Byte is returned in response to a serial poll, bit 6 acts as the
Request Service (RQS) bit. If the bit is set, it will be cleared after the Status
Byte is returned.

The Serial Poll Disable (SPD) command causes the analyzer to leave the serial

poll mode.
Take Control Talker If the analyzer is addressed to talk, this command causes it to take control
{TCT) of the HP-IB. It becomes the active controller on the bus. The analyzer

automatically passes control back when it compietes the operation that
required it to take control. Control is passed back to the address specified by
the *PCB command (which should be sent prior to passing control).

If the analyzer does not require control when this command is received, it
immediately passes control back.

1-12

Introduction to HP-IB Programmin
Programming Fundamental:

HP-1B Queues

Message Exchange

The analyzer communicates with the controller and other devices on the
HP-IB using program messages and response messages. Program messages a
used to send commands, queries, and data to the analyzer.

Response messages are used to return data from the analyzer. The syntax fo
both kinds of messages is discussed in Chapter 10.

There are two important things to remember about the message exchanges
between the analyzer and other devices on the bus:

s The analyzer only talks after it receives a terminated query (see “Query
Response Generation” later in this section).

s Once it receives a terminated query, the analyzer expects to talk before it
told to do something else.

Queues enhance the exchange of messages between the analyzer and other
devices on the bus. The analyzer contains:

e An input queue.
e An error queue.
e An output queue.

Input Queue.

The input queue temporarily stores the following until they are read by the
analyzer’s command parser:

e Device commands and queries.
e The HP-IB END message (EOI asserted while the last data byte is on the
bus).

The input queue also makes it possible for a controller to send multiple
program messages to the analyzer without regard to the amount of time
required to parse and execute those messages. The queue holds up to
128 bytes. It is cleared when:

e The analyzer is turned on.
o The Device Clear (DCL) or Selected Device Clear (SDC) command is
received.

1-1¢

Command Parser

VEEUMULLIVHE LU T Tl rugianinnmgy

Programming Fundamentals

Error Queue.

The error queue temporarily stores up to 20 error messages. Each time
the analyzer detects an error, it places a message in the queue. When you
send the SYST:ERR? query, one message is moved from the error queue to
the output queue so it can be read by the controller. Error messages are
delivered to the output queue in the order they were received.

The error queue is cleared when:

o All the error messages are read using the SYST:ERR? query.
e The analyzer is turned on.
e The *CLS command is received.

Output Queue.

The output queue temporarily stores a single response message until it is read
by a controller. It is cleared when:

e The message is read by a controller.

e The analyzer is turned on.

e The Device Clear (DCL) or Selected Device Clear (SDC) command is
received.

The command parser reads program messages from the input queue in the
order they were received from the bus. It analyzes the messages to determine
what actions the analyzer should take.

One of the parser’s most important functions is to determine the position of a
program message in the analyzer’s command tree (described in Chapter 10).
When the command parser is reset, the next command it receives is expected
to arise from the base of the analyzer’s command tree.

The parser is reset when:

The analyzer is turned on.

The Device Clear (DCL) or Selected Device Clear (SDC) command is
received.

e A colon immediately follows a semicolon in a program message. (For more
information see “Sending Multiple Commands” in Chapter 10.)

A program message terminator is received. A program message terminator
can be an ASCIH carriage return (®r) or newline character or the HP-IB
END message (EOI set true).

1-14

k} :

Query Response
Generation

Introduction to HP-IB Programmim

When the analyzer parses a query, the response to that query is placed in
the analyzer’s output queue. The response should be read immediately after
the query is sent. This ensures that the response is not cleared before it is
read. The response is cleared when one of the following message exchange
conditions occurs:

¢ Unterminated condition — the query is not properly terminated with an
ASCI carriage return character or the HP-IB END message (EOI set true)
before the response is read.

¢ Interrupted condition — a second program message is sent before the
response to the first is read.

e Buffer deadlock — a program message is sent that exceeds the length of th

input queue or that generates more response data than fits in the output
queue.

1-1

HIL VUMV LY il iU IIUHIQHHI“IIH

- Synchronizing the
| Analyzer
~ and a Controller

Synchronizing the Analyzer
and a Controller

The IEEE 488.2 standard provides tools that can be used to synchronize the
analyzer and a controller. Proper use of these tools ensures that the analyzer
is in a known state when you send a particular command or query.

Device commands can be divided into two broad classes:

e Sequential commands.
s Overlapped commands.

Most of the analyzer’'s commands are processed sequentially. A sequential
command holds off the processing of subsequent commands until it has been
completely processed.

Some commands do not hold off the processing of subsequent commands;
they are called overlapped commands.

2-2

P I S I

Overlapped Commands

Typically, overlapped commands take longer to process than sequential
commands. For example, the : INITIATE: IMMEDIATE command restarts a
measurement. The command is not considered to have been completely
processed until the measurement is complete. This can take a long time wit
a narrow system bandwidth or when averaging is enabled.

The analyzer has the following overlapped commands:

ABORt

CALibration:ZER0O:AUTO
CONFigure(1|2]
DIAGnostic:CCONstants:LOAD
DIAGnostic:CCONstants:STORe:DISK
DIAGnostic:CCONstants :STORe: EEPRom
DIAGnostic:DITHer
DIAGnostic:SPUR:AVOid
HCOPy[:IMMediate]

INITiate[112] :CONTinuous
INITiate[1]2] [:IMMediate]

MMEMory :LOAD:STATe

OUTPut [:STATe]
PROGram[:SELected] : EXECute
SENSe[112] :AVERage:CLEar
SENSe{112] : AVERage: COUNt
SENSe[112] : AVERage [:STATe]
SENSe[1]2] :BWIDth[:RESolution]
SENSe[1|2] : CORRection:COLLect[:ACQuire]

SENSe[1]2]
SENSe[1]2]
SENSe(1]2]
SENSe[1]2]
SENSe[1]2]

:CORRection
:CORRection
:CORRection
:CORRection
:CORRection

SENSe:COUPle
DETector[:FUNCtion]
DISTance:STARt (Option 100 only)
DISTance:STOP (Option 100 only)
FREQuency :CENTer
FREQuency : MODE (Option 100 only)

SENSe[112]:
SENSe[112]:
SENSe[1]2]:
SENSe[1]2]:
SENSe[1]2]:

:COLLect:ISTate[:AUTO]
:COLLect :METHod
:COLLect:SAVE
:CSET[:SELect]
[:STATe]

Synchronizing the Analyzer
and a Controller
Overlapped Commands

SENSe[1]2] : FREQuency : SPAN

SENSe[1|2] :FREQuency : SPAN :MAXimum

SENSe(1]2] :FREQuency:STARt

SENSe[1]2] :FREQuency:STOP

SENSe[1|2] :FUNCtion

SENSe[1|2] : FUNCtion:SRL:SCAN[:IMMediate] (Option 100 only)
SENSe:R0SCillator:S0URce

SENSe[1]2] :STATe

SENSe[1]2] :SWEep:POINts

SENSe[1|2] :SWEep:TIME

SENSe[1]2] :SWEep:TIME: AUTO
SENSe:SWEep:TRIGger:SOURce

SOURce(112] :POWer[:LEVel] [: IKMediate] [:AMPLitude]
SYSTem:PRESet

TRACe [:DATA]

TRIGger[:SEQuence] :SOURce

The analyzer uses a No Pending Operation (NPO) flag to keep track of
overlapped commands. The NPO flag is reset to O when an overlapped
comnmand has not completed (still pending). It is set to 1 when no overlapped
commands are pending. The NPO flag cannot be read directly but all of the
following common commands take some action based on the setting of the

flag.
*WAI

*0QPC?

*0PC

Holds off the processing of subsequent commands until the NPO
flag is set to 1. This ensures that commands in the analyzer’s input
queue are processed in the order received.

The program continues to run and additional commands are received
and parsed by the analyzer (but not executed) while waiting for the
NPO flag to be set. Use of the *WAI comumand is demonstrated in
the SETUP example program.

Places a 1 in the analyzer’s output quete when the NPO flag is set
to 1. If the program is designed to read the output Queue before it
continues, this effectively pauses the controller until all pending
overlapped commands are completed. Use of the *0PC? command is
demonstrated in the TRANCAL and REFLCAL example progrars.

Sets bit 0 of the Standard Event Status event register to | when the
NPO flag is set to 1. The analyzer's status registers can then be
used to generate a service request when all pending overlapped
cornmands are corapleted. This synchronizes the controller to the

2-4

Synchronizing the Analyzel
and a Controllel

completion of an overlapped command, but also leaves the controlle
free to perform other tasks while the command is executing.

NOTE

*QPC only informs you when the NPQ flag is set to 1. It does not hald off the processing of
subsequent commands. No commands should be sent to the analyzer between sending the *QPC
command and receiving the service request. Any command sent will be executed and may affect how
the instrument responds to the previously sent *OPC.,

The *CLS and *RST commands cancel any preceding *0PC command

or query. Pending overlapped commmands are still completed, but their

completion is not reported in either the status register or the output queue.
| Two HP-IB bus management commands — Device Clear (DCL) and Selected
i Device Clear (SDC) — also cancel any preceding *0PC command or query.

NOTE

Use *WAI, *OQPC? or *OPC whenever overlapped commands are used. A recommended technique
is to send *WAX at the end of each group of commands.

CAUTION

WY GHLINY LG NN YLD

and a Controller

ALWAYS trigger an individual sweep (using *0PC? and waiting for the

reply) before reading data over the bus or executing a marker function. The
analyzer has the ability to process the commands it receives faster than it can
make a measurement. If the measurement is not complete when the data is
read or a marker search function is executed the results are invalid.

The command to use (in an IBASIC OUTPUT staternent) is:

OUTPUT @Hp8711;"ABOR;:INIT:CONT OFF;:INIT;*0PC?"
ENTER @Hp8711;0pc_done

or another form of the : INITiate[1]2][:IMMediate] command combined
with the *QPC? query.

Refer to “Taking Sweeps” in Chapter 6 for more informat.ién.

2-6

Passing Control

Passing Control

When an external controller is connected to the analyzer with an HP-IB
cable, passing control may be needed to control devices such as printers and
plotters that are also connected on the HP-IB. For some operations the active
controller must pass control to the analyzer. When the analyzer completes
the operation, it automatically passes control of the bus back to the external
controller.

An example program, PASSCTRL, demonstrates passing control to the
analyzer. In this example program control is passed so the analyzer can
control a printer for hardcopy output. See Chapter 8, “Example Programs.®

NOTE

Pass Control is not needed to control peripherals connected to the serial or parallel ports.

For smooth passing of control, take steps that ensure the following conditions
are met:

s The analyzer must know the controller’s address so it can pass control
back.

e The controller must be informed when the analyzer passes control back.

3-2

Passing Control

The following is a procedure for passing control:

1.

Send the controller’s HP-IB address to the analyzer with the *PCB
command.

Clear the analyzer’s status registers with the *CLS command.

Enable the analyzer’s status registers to generate a service request when
the Operation Complete bit is set. (Send *ESE with a value of 1 and *SRE
with a value of 32.)

Enable the controller to respond to the service request.

Send the command that requires control of the bus followed by the *0PC
command.

. Pass control to the analyzer and wait for the service request. The service

request indicates that the command has been completed and control has
been passed back to the controller.

NOTE

For this procedure to work properly, only the command that requires control of the bus should be
pending. Other overlapped commands should not. For more information on overlapped commands, see
Chapter 2, “Synchronizing the Analyzer and a Controller.”

3-3

1 HOOHIY WUV

"~ Data Types and Encoding

Data Types and Encoding

Data is transferred between the analyzer and a controller via the HP-IB data
lines, DIO1 through DIO8. Such transfers occur in a byte-serial (one byte

at a time), bit-parallel (8 bits at a time) manner. This section discusses the
following aspects of data transfer:

e The different data types used during data transfers.
e Data encoding used during transfers of numeric block data.

4-2

Data Types

The uses a number of different data types during data transfers. Data transfe
occurs in response to a query. The data type used is determined by the
parameter being queried. The different parameter types are described in the
“Parameter Types” section of Chapter 10. Data types described in this sectio
are:

Numeric Data.
Character Data
String Data
Expression Data
Block Data

Numeric Data

The analyzer returns three types of numeric data in response to queries:

NR1 data Integers (such as +1, 0, -1, 123, -12345). This is the
response type for boolean parameters as well as some
numeric pa.rametet_'s.

NR2 data Floating point numbers with an explicit decimal point (such
as 12.3, +1.234, -0.12345).

NR3 data Floating point numbers in scientific notation (such as
+1.23E+5, +123.4E-3, -456.789E+6).

L e e R S R T

Data Types

Character Data

Character data consists of ASCIHI characters grouped together in mnemonics
that represent specific instrument settings (such as MAXimum , MINimum

or MLOGarithmic). The analyzer always returns the short form of the
mnemonic in upper-case alpha characters.

String Data

String data consists of ASCII characters. The string must be enclosed by a
delimiter, either single quotes (’This is string data.’) or double quotes
("This is also string data."). To include the delimiter as a character in
the string it must be typed twice without any characters in between. The
analyzer always uses double quotes when it returns string data.

Expression Data

Expression data consists of mathematical expressions that use character
parameters. When expression data is sent to the analyzer it is always
enclosed in parentheses (such as (IMPL/CH1SMEM) or (IMPL)). The analyzer
returns expression data enclosed in double quotes.

Data Types and Encoding
Data Types

Block Data

Block data are typically used to transfer large quantities of related data (like a
data trace). Blocks can be sent as definite length blocks or indefinite length
blocks — the instrument will accept either form. The analyzer always returns
definite length block data in response to queries. -

Definite Block Length The general form for a definite block length transfer is:
#<num_digits><num_bytes><data_bytes>

In the definite length block, two numbers must be specified. The single
decimal digit <num_digits> specifies how many digits are contained in
<num_bytes>. The decimal number <num_bytes> specifies how many data
bytes will follow in <data_bytes>. An example IBASIC (or HP BASIC)
statement to send ABC+XYZ as a definite block length parameter is shown,
note that the data block contains seven bytes (7) and only one digit is needed
to describe the block length 1.

OUTPUT 716;"#17ABC+XYZ"

NOTE

This analyzer will send an additional <€ x> with EOI asserted for definite block length transfers. The
definite length block form for your analyzer is:
#<num_digits><num_bytes><data_bytes><Cg><E0I>

<num_bytes> is the number of <data_bytes> without counting <Cgr><EDI>.

4-5

“Ule y PO Ul LII\AUUIIIH

Data Types

Indefinite Block Length The general form for an indefinite block length transfer is:

#0<data_bytes><CR><E0I>

After the last data byte is sent, the indefinite length block must be terminated
by sending a carriage return or newline with EOI asserted. This forces the
termination of the program message. An example IBASIC (or HP BASIC)
statement to send ABC+XYZ as an indefinite block length parameter is shown,
note that ,END is used to properly terminate the message.

QUTPUT 716;"#0ABC+XYZ" ,END

Data Encoding for Large Data Transfers

The FORMat :DATA command selects the type of data and the type of data
encoding that is used to transfer large blocks of numeric data between the
analyzer and a controlier. There are two specifiers:

REAL specifies the block data type. Either the definite or indefinite
length syntax can be used. The block is transferred as
a series of binary-encoded floating-point numbers. Data
transfers of the REAL, 64 data type are demonstrated in the
REALDATA example program.

INTeger specifies the block data type. Either the definite or indefinite
length syntax can be used. The block is transferred as an
array of binary-encoded data with each point represented
by a set of three 16-bit integers. This is the instrument’s
internal format — it should only be used for data that will be
returned to the instrument for later use. Data transfers of
the INTeger, 16 data type are demonstrated in the INTDATA

~ and LOADCALS example progrars.

ASCii specifies the numeric data type (NR1, NR2 or NR3 syntax).
The data is transferred as a series of ASCII-encoded numbers
separated by commas. ASCii formatted data transfers are
demonstrated in the ASCDATA example program.

Blocks that contain mixed data — both numbers and ASCII characters —
ignore the setting of FORMat : DATA. These blocks always transfer as either
definite length or indefinite length block data. The following cornmands
transfer blocks of mixed data:

PROGram[:SELected] :DEFine
SYSTem:SET

4-7

uaia Iypea gy Liibuuily

Dsta Encoding for Large Data Transfers

ASCII Encoding

The ANSI X3.4-1977 standard defines the ASCII 7-bit code. When an
ASCII-encoded byte is sent over the HP-IB, bits O through 6 of the byte

(bit 0 being the least significant bit)correspond to the HP-IB data lines DIO1
through DIO7. DIOS is ignored.

When ASCI encoding is used for large blocks of data, the number of
significant digits to be returned for each number in the block can be specified.
For example, the following command returns all numbers as NR3 data with 7
significant digits.

FORMat :DATA ASCii,7

Binary Encoding

When binary encoding is used for large blocks of data, all numbers in the
block are transferred as 32-bit or 64-bit binary floating point numbers or as
an array of 16-bit integers. The binary floating-point formats are defined in
the IEEE 754-1985 standard.

FORMat :DATA REAL, 32---selects the IEEE 32-bit format (not supported by
IBASIC or HP BASIC).

FORMat :DATA REAL, 64 --selects the IEEE 64-bit format.
FORMat :DATA INTeger, 16---selects the 16-bit integer format.

4-8

Data Types and Encoding

Byte Swapping

PC compatibles frequently use a modification of the IEEE floating point
formats with the byte order reversed. To reverse the byte order for data
transfer into a PC, the FORMat : BORDer command should be used.

FORMat :BORDer SWAPped selects the byte-swapped format
FORMat :BORDer NORMal selects the standard format

4-9

LAl YPBI dlu LILUUIiY

- Using Status Registers

Using Status Registers

The analyzer’s status registers contain information about the condition of the
network analyzer and its measurements. This section describes the registers
and their use in HP-IB programming.

Example programs using the status registers are included in Chapter 8,
“Example Programs.” These programs include SRQ and GRAPHICS which
use service request interrupt routines, PASSCTRL which uses the status byte
to request control of the HP-IB and LIMITEST which uses the Limit Fail
condition register.

Bit Weights

B[+l lw[~]7]

—_
=

lzlals]

1

2

4

8

16

32

64

128
256
512
1.024
2,048
4,09
8,192
16.384
32.768

General Status Register Model

The analyzer’s status system is based on the general status register model
shown in Figure 5-1. Most of the analyzer’s register sets include all of the
registers shown in the model, although commands are not always available
for reading or writing a particular register. The information_flow within a
register set starts at the condition register and ends at the register summary
bit (see Figure 5-2). This flow is controlled by setting bits in the transition
and enable registers.

Two register sets — the Status Byte and the Standard Event Status
Register — are 8-bits wide. All others are 16-bits wide, but the most
significant bit (bit 15) in the larger registers is always set to 0.

Condition Register { STATus: <mnemonic>:CONDition?)
Positive Transition Filter { STATus:<mnemonic>:PTRansition)
Negative Transition Filter { STATus:<mnemonic>:NTRansition)

Event Register { STATus: <mnemonic>(EVENY?)
l [——Enable Register { STATus:<mnemonic>.ENABle)

Bit O condition | O | I 17]] R
Bit 1 condition | 1 Il]
Bit 2 condition [2 | 1T -

El i i -]

14 JiL

o 1111

a il i - =

= 3 _L — - » § &—-b To Summary Bit

i § - perres {ommrerd A=

2"

ol — o 1——+

1 i i

12 I3]

13] T [T

14 J11 >

L e
Bit 15 condition [15] TIL - o4

Figure 5-1. General Status Register Model

9-3

Using Status Registers
Gensral Status Register Model

Condition Register

Condition registers continuously monitor the instrument’s hardware and
firmware status. Bits in a condition register are not latched or buffered, they
are updated in real time. When the condition rmonitored by a specific bit
becomes true, the bit is set to 1. When the condition becomes false the bit is
reset to 0. Condition registers are read-only.

Transition Registers

Transition registers control what type of change in a condition register will
set the corresponding bit in the event register. Positive state transitions

(0 to 1) are only reported to the event register if the corresponding positive
transition bit is set to 1. Negative state transitions (1 to 0) are only reported
if the corresponding negative transition bit is set to 1. Setting both transition
bits to 1 causes both positive and negative changes to be reported. Transition
registers are read-write, and are unaffected by *CLS (clear status) or queries.
They are reset to instrument default conditions at power up and after *RST
and SYSTem:PRESet commands.

Event Register

Event registers latch any reported condition changes. When a transition bit
allows a condition change to be reported, the corresponding event bit is set
to 1. Once set, an event bit is no longer affected by condition changes. It

remains set until the event register is cleared. Lvent registers are read-only. ’q’\

An event register is cleared when you read it. All event registers are cleared
when you send the *CLS (clear status) command.

o-4

Using Status Registers
General Status Register Maodel

Enable Register

Enable registers control the reporting of events (latched conditions) to the
register summmary bit. If an enable bit is set to 1 the corresponding event

is included in the logical ORing process that determines the state of the
summary bit. (The summary bit is only set to 1 if one or more enabled event
bits are set to 1.) Summary bits are recorded in the instrument’s status byte.
Enable registers are read-write and are cleared by *CLS (clear status).

Positive
Transition
Register

Enable
Register

To
@ E AND Summary
Bit

Condition Event
Register © Register

'_]_] AND

!

Note:
The Event Register remains set until it is read
Negative or the *CLS command is sent.
Transttion
Register

Figure 5-2. Flow of information within a register set

How to Use Registers

There are two methods of accessing the information in status registers:
e The direct-read method.
e The service request (SRQ) method.

In the direct-read method the analyzer is passive. It only tells the controller
that conditions have changed when the controller asks the right question. In
the SRQ method, the analyzer is more active. [t tells the controller when
there has been a condition change without the controller asking. Either
method allows you to monitor one or more conditions.

The following steps are used to monitor a condition with the direct read
method:

1. Determine which register contains the bit that monitors the condition.
2. Send the unique HP-IB query that reads that register.
3. Examine the bit to see if the condition has changed.

The direct-read method works well when it is 110t necessary to know
about changes the moment they occur. It does not work well if immediate
knowledge of the condition change is needed. A program that used this

method to detect a change in a condition would need to continuously read the

registers at very short intervals. The SRQ method is better suited for that
type of need.

5-8

" The Service Request Process

The following steps are used to monitor a condition with the SRQ method:

1.
2.

4.

Determine which bit monitors the condition.

Determine how that bit reports to the request service (RQS) bit of the
Status Byte.

Send HP-IB commands to enable the bit that monitors the condition and tc¢
enable the summary bits that report the condition to the RQS bit.

Enable the controller to respond to service requests.

When the condition changes, the analyzer sets its RQS bit and the HP-IB's
SRQ line. The controller is informed of the change as soon as it occurs. The
time the controller would otherwise have used to monitor the condition can
now be used to perform other tasks. The controller’s response to the SRQ is
determined by the program being run.

5-7

UDINY DLGLUD (1BYIdLEID

The Service Request Process

Generating a Service Request

A service request is generated using the Status Byte. As shown in Figure 5-3,
the analyzer’s other register sets report to the Status Byte. Some of them
report directly while others report indirectly through other register sets.

from other Status Service
register Byte Request
sets register enatle
register
g
N 7]
L L
Service
Service Request
Request #—————— Process
(SRQ)

Logical OR

Figure 5-3. Generating 8 Service Request

5-8

Using Status Registers
The Servics Reguest Procsss

The process of preparing the analyzer to generate a service request, and the
handling of that interrupt when it is received by a program, are demonstrate
in the SRQ example program.

When a register set causes its summary bit in the Status Byte to change from
0 to 1, the analyzer can initiate the service request (SRQ) process. If both the
following conditions are true the process is initiated:

e The corresponding bit of the Service Request enable register is
also set to 1.

e The analyzer does not have a service request pending. (A service request i
considered to be pending between the time the analyzer’s SRQ process is
initiated and the time the controller reads the Status Byte register with a
serial poll).

The SRQ process sets the HP-IB's SRQ line true and sets the Status Byte's
request service (RQS) bit to 1. Both actions are necessary to inform the
controller that the analyzer requires service. Setting the SRQ line informs
the controller that some device on the bus requires. service. Setting the RQS
bit allows the controller to determine that the analyzer was the device that
initiated the request.

When a program enables a controller to detect and respond to service
requests, it should instruct the controller to perform a serial poll when the
HP-IB’s SRQ line is set true. Each device on the bus returns the contents of
its Status Byte register in response to this poll. The device whose RQS bit is
set to 1 is the device that requested service.

NOTE

When the analyzer’s Status Byte is read with a serial poll, the ROS bit is reset to 0. Other bits in the
register are not affected.

As implied in Figure 5-3, bit 6 of the Status Byte register serves two
functions; the request service function (RQS) and the master summary status
function (MSS). Two different methods for reading the register allow you to
access the two functions. Reading the register with a serial poll allows you to
access the bit’s RQS function. Reading the register with *STB allows you to
access the bit’s MSS function.

5-9

~ The Analyzer’s Status Register Sets

The analyzer uses eight register sets to keep track of instrument status:

Status Byte *STB? and *SRE
Device Status STATus:DEVice
Limit Fail STATus:QUEStionabla:LIMit

Questionable Status STATus:QUEStionablae
Standard Event Status *ESR? and *ESE

Measuring Status - STATus :0PERation:MEASuring
Averaging Status STATus:0PERation:AVERaging
Operational Status STATus:0PERation

Their reporting structure is surnmarized in Figure 5-4. They are described in
greater detail in the following section.

NOTE

Register bits not explicitly presented in the following sections are not used by the analyzer. A query to
one of these bits returns a value of 0.

5-10

Using Status Registers
The Anelyzer's Status Register Sets

‘ Device Status

Questionable Status

I
e
J

Limit Fail
Standard Event

Status Register

|

ey

Status Byte

CECEEE

Figure 5-4. Analyzer Register Sets

5-11

UdIHY OLdiud NEYISIES

The Analyzer's Status Register Sets

Status Byte

The Status Byte register set summarizes the states of the other register sets
and monitors the analyzer’s output queue. It is also responsible for generating
service requests (see “Generating a Service Request” earlier in this chapter).

See Figure 5-5.

serial pok dit 6 = Request Se'mce)

*STB? (uit © = Master Summary Status)
Bit Weights *SRE
0]
1

LIl

Questionable Status Summary
Message Availabie

Device Status Summary Z
3 |
| 4 |

5

Standard Event Summary
Request Service/Master Summary Status
Operational Status Summary

\JLogical OR

Figure 5-5. The Status Byts Register Set

The Status Byte register set does not conform to the general status register
model described at the beginning of this chapter. It contains only two
registers: the Status Byte register and the Service Request enable register.
The Status Byte register behaves like a condition register for all bits except
bit 6. The Service Request enable register behaves like a standard enable
register except that bit 6 is always set to 0.

5-12

Using Status Registers
The Analyzer's Status Registar Sets

Bits in the Status Byte register are set to 1 under the following conditions:

Device Status Summary

Questionable Status Summary

Message Available

Standard Event Status

Summary

Master Summary Status

Request Service

Operational Status Summary

(bit 2) is set to 1 when one or more enabled
bits in the Device Status event register are
set to 1.

(bit 3) is set to 1 when one or more enabled
bits in the Questionable Status event registe
are set to L.

(bit 4) is set to 1 when the output queue
contains a response message.

(bit 5) is set to 1 when one or more enabled
bits in the Standard Event Status event
register are set to 1.

(bit 6, when read by *STB) is set to 1 when
one or more enabled bits in the Status Byte
register are set to 1.

(bit 6, when read by serial poll) is set

to 1 by the service request process (see
“Generating a Service Request” earlier in
this chapter).

(bit 7) is set to 1 when one or more enabled
bits in the Operational Status event register
are set to 1.

VAl WLULUY 1IGYIRIGIHD

The Analyzer's Status Register Sets

The commands used to read and write the Status Byte registers are listed

below:
SPOLL

*STB?

*SRE <num>

*SRE?

an IBASIC (or HP BASIC) command used in the service
request process to determine which device on the bus is
requesting service.

reads the value of the instrument’s status byte. This is a
non-destructive read, the Status Byte is cleared by the *CLS
command.

sets bits in the Service Request Enable register. The current
setting of the Service Request Linable register is stored in
non-volatile memory. If *PSC has been set, it will be saved
at power on.

reads the current state of the Service Request Enable
register.

5-14

Using Status Registers
The Analyzer's Status Register Sets

Device Status Register Set

The Device Status register set monitors the state of device-specific
parameters.

Bits in the Device Status condition register are set to 1 under the following
conditions:

Key Pressed (bit 0) is set to 1 when one of the analyzer’s front panel
keys has been pressed.

Limit Fail Register Set

The Limit Fail register set monitors limit test results for both measurement

_ channels.
Bits in the Limit Fail condition register are set to 1 under the following
conditions:
Channel 1 (bit 0) is set to 1 when limit testing in enabled and any point

Limit Failed on channel 1 fails the limit test.

Channel 2 (bit 1) is set to 1 when limit testing in enabled and any point
Limit Failed on channel 2 fails the limit test.

UdINy tdilud eyt

The Analyzar's Status Register Sets

Questionable Status Register Set

The Questionable Status register set monitors conditions that affect the
quality of measurement data.

Bits in the Questionable Status condition register are set to 1 under the
following conditions:

Limit Fail (bit 9) is set to 1 when one or more enabled bits in the Limit
Fail event register are set to 1.

Data (bit 10) is set to 1 when a change in the analyzer’s
Questionable configuration requires that new measurement data be taken.

5-16

Using Status Registers
The Analyzer's Status Register Sets

L Standard Event Status Register Set

The Standard Event Status register set monitors HP-IB errors and
synchronization conditions. See Figure 5-6

*ESR?
Bit Weights

Operation Complete
Request Control

Query Error

Device Dependent Error
Execution Error
Command Error

User Request

Powar On 7

*ESE

Bit 5
Status Byte

ENINT LN B (o]

(LT

\JLogical OR

Figure 5-6. The Standard Event Status Register Set

The Standard Event Status register set does not conform to the general status
register model described at the beginning of this section. It contains only twc
registers: the Standard Event Status event register and the Standard Event
Status enable register. The Standard Event Status event register is similar

to other event registers, but behaves like a register set that has a positive
transition register with all bits set to 1. The Standard Event Status enable
register is the same as other enable registers.

Operation (bit 0) is set to one when the following two events occur
Complete (in the order listed):

e The *0PC command is sent to the analyzer.
e The analyzer completes all pending overlapped
commands.

5-117

Uolly Wialue 1icyiatlcio

The Anslyzer's Status Register Sets

Request Control

Query Error
Device Dependent
Error

Execution Error

Command Error

Power On

(bit 1) is set to 1 when both of the following conditions
are true:

e The analyzer is configured as a talker/listener for HP-IB
operation.

e The analyzer is instructed to do something (such as
plotting or printing) that requires it to take control of
the bus.

(bit 2) is set when the command parser detects a query
erTor.

(bit 3) is set to 1 when the command parser detects a
device-dependent error.

'(bit 4) is set to 1 when the command parser detects an

execution error.

(bit 5) is set to 1 when the command parser detects a
command error.

(bit 7) is set to 1 when you turn on the analyzer.

The commands used to read and write the Standard Event Status registers are

listed below:

*ESR? reads the value of the standard event status register.

*ESE <num> sets bits in the standard event status enable register. The
current setting of the standard event statue enable register
is stored in non-volatile memory. If *PSC has been set, it
will be saved at power on.

*ESE? reads the current state of the standard event status enable
register.

5-18

Using Status Registers
The Analyzer's Stetus Register Sets

Measuring Status Register Set

The Measuring Status register set monitors conditions in the analyzer’s
measurement process.

Bits in the Measuring Status condition register are set to 1 under the
following conditions:

Channel 1 Measuring (bit 0) is set to 1 while the analyzer is collecting
measurement data on channel 1.

Channel 2 Measuring (bit 1) is set to 1 while the analyzer is collecting
measurement data on channel 2.

Averaging Status Register Set

The Averaging Status register set monitors conditions in the analyzer's
measurement process when the trace averaging function is in use.

Bits in the Averaging Status condition register are set to 1 under the followin
conditions:

Channel 1 Averaging (bit 0) is set to 1 while the analyzer is sweeping on
channel 1 and the number of sweeps completed
(since “average restart”) is less than the averaging
factor.

Channel 2 Averaging (bit 1) is set to 1 while the analyzer is sweeping on
channel 2 and the number of sweeps completed
(since “average restart”) is less than the averaging
factor.

5-1¢

Uy Otatud NEYdLED

The Analyzer's Status Register Sets

Operational Status Register Set

The Operation Status register set monitors conditions in the analyzer’'s
measurement process, disk operations, and printing/plotting operations. It
also monitors the state of the current HP Instrument BASIC program.

Bits in the Operational Status condition register are set to 1 under the
following conditions:

Calibrating
Settling
Measuring
Correctiné
Averaging
Hardcopy
Running

Test Running

Program Running

(bit 0) is set to 1 while the Instrument is zeroing the
broadband diode detectors.

-(bit 1) is set to 1 while the measurement hardware is

settling.

(bit 4) is set to 1 when one or more enabled bits in the
Measuring Status event register are set to 1.

(bit 7) is set to 1 while the analyzer is performing a
calibration function.

(bit 8) is set to 1 when one or more enabled bits in the
Averaging Status event register are set to 1.

(bit 9) is set to 1 while the analyzer is performing a
hardcopy (print or plot) function.

(bit 10) is set to 1 when one of the analyzer’s internal
service tests is being run.

(bit 14) is set to 1 while an P Instrument BASIC
program is running on the analyzer’s internal controller.

5-20

Using Status Registers

The Analyzer's Status Register Sets

STATus:PRESet Settings

Executing the STATus :PRESet command changes the settings in the enable
(ENAB), positive transition (PTR) and negative transition (NTR) registers. The
table below shows the settings after the command is executed.

Register Set ENABle PTRansition | NTRansition
STATus:DEVice gll Os all 1s 8l Os
STATus:QUEStionable:LIMit el 1s all 1s all Os
STATus:QUEStionable all Os all 1s all Os
STATus:0PERation:MEASuring oil 1s all Os all 1s
STATus :OPERation:AVERaging all 13 all Os all 1s
STATus :0PERation ail Os all 1s all Os

uallily oldilus negisiers

Analyzer Register Set Summary

Device Status

Any Key Pressed| O
Any Softkey Presseal|) /
Any Ext. Keybd. Pressed| 2 -3
Front Panel Knob Turned| 3 -
$
\ Questiongble
| Status
15 - 3 ~
. . . 1
Limit Fail EB
CH1 Limit Faii[0 3 .
CH2 Limit Fait{] 7 4
CHY Mkr Limit Fail} 2 '5 5 .
CH2 Mkr Limit Failt|3 ' 6 o
E— rE b2 >_
: B e}
el "'""49 i°
P |2 H- OQutput Queue
15 10 j/
11 [Message Available }——ﬂ .
Standard Event ! | Status Byte o
i i 0 0
Stotus Register 15 D, | - o
- 5 ——
Operation Compiete{ 0 l 5 ra s
Request Control |} / ’ 3]
Query Error| 2 ,S et He
1 4 4]
Device—Deapendent Error | 3 - L= }eed] 14
1 1o S] -
Executian Error| 4 K 5]
Command Error | § 1 N~
. - ——{ 7 7
User Reagquest| 6 [[A
Power On) 7 :
. .
Measuring Operctional |
CHY Measuring[g Status i
CHZ Measuring{ i J Calibratingi o /\ 1
CH1 SRL $con| 2 g Settiing | ///
* / b
{cnz SRL Scen| 3 1< | 2] ///
1.2 P_i___ /
18 X iz
ares «
s—{7_/ & =51
) Correcting| 7 E"
Averaging . 8 i }———*‘
CH1 Averaging [0 —d ™~)i‘ardcopy fn Progress 19 | a":
- 1 Service Test in Progress| 10 Y/
CH2 Averaging| ! =1
2 1% KEN
ne 12
He 13
f; Progrom Running|14 ///
g nEnZy
REL /

* option 100 only
coblb

5-22

" Trace Data Transfers

Trace Data Transfers

This chapter explains how to read (query) the measurement data trace from
the analyzer into your program. It also describes how to send data from your
program to the analyzer’s measurement arrays. Accessing the measurement
arrays is done using SCPI commands. If you are using IBASIC (Option 1C2),
you can also access the measurement arrays using high-speed subroutines.
Refer to the HP Instrument BASIC User’s Hanabook for more details.

Figure 6-1 is a data processing flow diagram that represents the flow of
numerical data. The data passes through several math operations, denoted in
the figure by single-line boxes. Most of these operations can be selected and
controlled with the front panel CONFIGURE block menus. The data is stored
in arrays along the way, denoted by double-line boxes. These arrays are
places in the flow path where data is accessible via HP-IB. While only a
single flow path is shown, two identical paths are available, corresponding to
channel 1 and channel 2.

Raow Datao
AB,RAUX

Error A 4| Corrected "
£ . wveragin
Correction LRLC Data |

Ratio

Error
Coefficient C:rrcctco
Arrays emory :l

Troce Electrical &]| Formattec —”1 Offset = Dota Trace
Transtorm Format
Math Delay - £ -— Arrays 1 Scale —& Memory Trace
R

& ‘darkers

‘——# mit Tesung

Figure 6-1. Numeric Data Flow Through the Network Analyzer

6-2

Querying the Measurement Trace Using BASIC

After making a measurement, you can read the resultant measurement trace
out of the analyzer using the SCPI query

"TRACE:DATA? CH1FDATA"

The BASIC program segment below shows how to read the trace from the
analyzer into an array in your program.

10 REAL Trace(1:201)

20 ASSIGN Q@Hp8711 TO 716

30 ! Take sweep here

40 OUTPUT @Hp8711;'"FORM:DATA ASCII,5"

50 OUTPUT QHp8711;"TRACE:DATA?7 CH1FDATA"

60 ENTER OHp8711;Trace(*) _

70 DISP Trace(l),Trace(2),Trace(3),™. . . ."

In this program, the TRACE:DATA? query returns all of the measurement
points as a single block. The analyzer computes the value for each point
using the measurement format selected by the [FORMAT] menu (CALC:FORM
SCPI command), and returns a block of data called the formatted data array.
The values of each point correspond to the values displayed on the screen, or
those shown in the marker readouts. The frequency stimulus value (X-axis) of
each point is not returned by the TRACE : DATA? query; only the measurement
response (Y-axis) values are returned.

When transferring the block of trace data, you may select either binary or
ASCII data encoding. This is explained in Chapter 4 in the section titled
“Data Encoding for Large Data Transfers.” Notice that the terms “encoding
format” and “measurement format” are not the same. The encoding

format determines how the numbers are represented as bytes, while the
measurement format corresponds to the meaning of the value of the numbers.

The easiest way to transfer a measurement data trace is to use ASCII data
encoding.

In the example above, the array Trace(1:201) contains 201 real (floating point)
numbers. The SCPI cormmand "FORM:DATA ASCII,S5" specifies ASCI data
encoding, with 5 significant digits. The command "TRACE:DATA? CH1FDATA"
instructs the analyzer to send the measurement trace. The ENTER statement
reads the measurement data sent by the analyzer into the Trace(1:201) array.

6-3

HULG WULU 1Al

Querying the Measurement Tracs Using BASIC

It is important to make sure that the Trace array declared in your program

is the same size as the measurement trace on the analyzer, or an error will
occur. The ENTER statement attempts to read data from the analyzer until

it completely fills the Trace array, at which point it expects to receive a
end-of-data terminator from the analyzer. To be safe, your program should
use the "SENS:SWE:POIN" SCPI command to set the number of measurement
data points to the desired value.

Refer to the example program ASCDATA in Chapter 8 for a complete
exaraple.

10
20
30
40
50
60
70

®Smith Chart and Polar Formats

Each measurement point is represented by a single floating point number.
This is the case for all of the analyzer’'s measurement formats except Smith
Chart and Polar in the HP 8712B and 8714B. When Smith Chart or Polar
format is selected, each point is represented by two numbers, the first one
being the real portion and the second being the imaginary portion of the
complex measurement value.

Below is a modified example program that will work when using Smith Chart
or Polar formats.

REAL Trace(1:201,1:2)

ASSIGN QHp8711 TO 716

! Take sweep here

OUTPUT @Hp8711;"FORM:DATA ASCII,5"

OUTPUT QHp8711;"TRACE:DATA? CH1FDATA"

ENTER Q@Hp8711;Trace(*)

DISP Trace(1,1),Trace(1,2),". . . .",Trace(201,1),Trace(201,2)

6-4 6D indicates HP 87128/148 oaly

Querying the Measurement Trace Using SICL

This section includes a complete SICL C program that shows how to read the
measurement, trace from the analyzer.

/20033 s s ok ok o oo s s o s ok o e o oo oo o o oo ol o o oo o o o R o K K i oo ool o o K K o o o o ok
* This program takes a sweep, reads the trace, and prints it.

*
*
*
*x

It uses SICL (Standard Instrument Control Library) to talk
to the analyzer over HP-IB.
On HP-UX, compile using: cc -Aa -o query_trace query._trace.c -lsicl

***************************************1!**********************************/

#include <sicl.h> /* For iopen(), iprintf(), iscanf(), INST, ... */
#include <stdio.h> /* For printf() =/

int main(void)

{

INST analyzer; /* Handle used to talk to analyzer */
float data_buf{1601]; /* measurement trace. 32-bit floats */
int num_trace_bytes;

int pt;

num_trace_bytes = sizeof(data_buf); /* Set to max allowable bytes */

/* Open the network analyzer at address 16 */
analyzer = iopen('"hpib,16");

/* Clear the bus */
iclear(analyzer);

/* Abort current sweep and put analyzer sweep in hold */
iprintf(analyzer, "ABORT\n");
iprintf(analyzer, "INIT:CONT OFF\n");

/* Take one sweep, wait until done */
iprintf(analyzer, "INITi\n");
iprintf(analyzer, "*0PC?\n");

6-5

Hauvt wata Jlallhitiy

Quarying the Measurement Trace Using SICL

iscanf (analyzer, "%*s");

/* Request the trace data in 32-bit floating point format */
iprintf (analyzer, "FORM:BORD NORM\n");
iprintf(analyzer, "FORM:DATA REAL,32\n");

/* Query the trace, read into data_buf[]. */
iprintf (analyzer, “"TRAC? CH1FDATA\n");
iscanf(analyzer, "%#bJ%*c", &num_trace_bytes, &data_buf[0]);

/* Print the trace values. */

for (pt = 0; pt < num_trace_bytes/sizeof(float); pt++) {
P P yt
printf ("%4d %g\n", pt, data_buf[ptl);

} .

/* Close analyzer and exit. */
iclose(analyzer);
return 0;

6-6

: Using Binary Data Encoding

The previous section describes how to query the measurement trace, and
transfer it into your program using ASCII encoding. Binary encoding can be
used for faster data transfers, as shown in the table below:

Table 6-1. Typical Tracs Transfer Times (ms)

Number of Paints | Binary | ASCI
51 38 60
mn 59 199
401] 390
1601 335 | 1510

When using binary data transfers, the entire trace is sent from the analyzer
to your program in a block called a definite length block. The details of block
data are described in detail in Chapter 4. The definite length block contains a
header and a data section. The header indicates how many bytes are in the
data section.

In order to read the definite length block, your program must first read
the header, and then read the data section. Refer to the example program
REALDATA in Chapter 8 for an example of how to do this.

In the REALDATA program, you will notice the following lines which read the
definite block header:

180 ENTER QHp8711 USING "%,A,D";A$,Digits
190 ENTER QHp8711 USING "%,"&VAL$(Digits)&"D";Bytes

and these lines which read the data section;

200 ASSIGN QHp8711;FORMAT OFF
210 ENTER @Hp8711;Datal(x)

6-7

‘-‘] - :
RS T

Trace Data Transfers
Using Binary Data Encoding

Each measurement point in the data section is represented as 4 or 8 bytes
(32 or 64 bits), depending on whether single precision or double precision
numbers are requested. When using HP BASIC or IBASIC, you must select
double precision numbers to match BASIC’s “REAL” data type. Do this
using the SCPI command "FORM:DATA REAL,64". If you are using another
language that supports single precision data types, you can select single
precision using the SCPI command "FORM:DATA REAL,32". Languages such
as QuickBASIC and C have support for both single and double precision
floating point nurabers.

When transferring data using binary encoding, you may need to reverse
the order of the bytes in each measurement pomt, since PCs frequently
store [EEE floating point numbers with the byte order reversed. To instruct
the analyzer to reverse the byte order of the data, send the command
"FORMAT :BORDer SWAPped' before querying the trace data.

6-8

Trace Data Transfers
Using Binary Data Encoding

Trace Data Transfer Sizes

The following table shows how many bytes are transmitted during trace
data transfers. The left column shows the format of the data, which you can
specify using the SCPI command Format : DATA. As you can see, the size of
the measurement point data and trace data varies as you change format.

Table 6-2. Size of Trace Data Transfers (in Bytes) Using the TRACE:DATA SCPI Command

Formst Type Type of Data Single Mezsuramsnt Point 201 Point Trace
(FORMat : DATA)
Real Coemplax Reel Complex
REAL,32 IEEE 32-bit 4] 809 1614
Foating Point
REAL 64 IEEE 64-bit 8 16 1614 272
Hoeting Point
ASCIN,5 ASCIl numbers 13 26 2613 5226
ASCHL3 ASCI! numbers 1 22 2 4472
INT, 16 Internai Binary - 6 - 1212

When transmitting data in “REAL” or “INT” format, a header is sent before
the data block. The header indicates the size of the data block. The header
size varies in length from 3 to 11 bytes. Refer to Chapter 4 for details on the
header.

Transmitting ASCI data requires no header. The ASCIHI values are separated
by commas, and a linefeed is sent after the last value. The sizes shown in th
table include the size of the comma(s) and terminating linefeed. Typical data
in ASCII,5 format:

-1.2254E+000,+5.0035E-001,+4 .5226E-001, ...

The analyzer stores its internal data with approximately 5 significant digits
of resolution. Using REAL,32 or ASCII,5 format provides sufficient precision
for data transfers. However, REAL,64 may be necessary when using a
programming language which does not support IEEE 32-bit floating point.

Transferring Data with IBASIC

If you are using IBASIC, your IBASIC program can avoid the overhead of
using OUTPUT and ENTER to transfer trace data, and instead use the
analyzer’s built-in high-speed subprograms. These built-in subroutines let
you quickly move data between the analyzer's ineasurement arrays and your
program's data arrays. For example, to read the analyzer’s formatted data
array, use the following:

10 DIM Fmt(1:201)

20 INTEGER Chan

30 LOADSUB Read_fdata FROM "XFER:MEM 0,0"
40 Chan=1

50 Read_fdata(Chan,Fmt(*))

Refer to the HP Instrument BASIC User’s Handbook for more details.

The table below compares the speed of IBASIC using high-speed transfer
subroutines with that of a fast external controller using the SCPI
TRACE:DATA? CH1FDATA query.

Table 6-3. Typical Trace Transfer Times (ms)

Mumber of Points | Contreller Using Binsry TRACE:DATA? | IBASIC Using Read _fdata
51 38 14
201 59 37
401 98 67
1601 335 25

8-10

Taking Sweeps

When making measurements and querying traces, your program should
perform the following steps:

1. Place the analyzer’s sweep in hold

2. Initiate a single sweep

3. Wait for the sweep to complete

4. Query the measurement trace

Use the following program lines perform these steps:

10 OUTPUT @Hp8711;"ABORT;:INIT1:CONT OFF"
20 OUTPUT QHp8711;"INIT1"

30 OUTPUT QHp8711;"*0PC?"

35 ENTER OHp8711;0pc

40 OUTPUT QHp8711;"TRACE:DATA? CH1FDATA"
45 ENTER QHp8711;Fmt(x)

If you query the measurement trace while the analyzer is in continuous
sweep, the query will still work, but the data may not be correct. Using INIT
and *OPC? ensures that a complete sweep has finished before you query the
measurement data. In many cases, you can also use the command “*WAI” in
place of the “*OPC?” query, replacing lines 30 and 35 above with:

30 OUTPUT QHp8711;"*WAI""

However, there are cases where "*WAI" will produce incorrect results. One
case is when using IBASIC’s high-speed subprograms to query the trace data.
"*WAI" only ensures that the SCPI commands following the "*WAI" are not
executed until the commands before the "*WAI" are complete. Since IBASIC
subprograms don’t use SCPI commands to access the trace data, "*WAI" is
ineffective, and "*0PC?" should be used.

When using "*0PC?", the ENTER statement following the "*0PC?" will wait
until the previous SCPI commands are complete, preventing your program
from executing beyond the ENTER statement. When using "*WAI'", your
program can continue to run and send SCPI commands, and the analyzer wil
buffer them and act upon them in order.

For more details, refer to Chapter 2, “Synchronizing the Analyzer and a
Controller.”

6-1

CALC:DATA? versus TRACE:DATA?

The SCPI command "CALC1:DATA?" is functionally equivalent to the
command "TRACE:DATA? CH1FDATA". The two can be used interchangeably
for trace queries of the formatted measurement data. The "TRACE:DATA"
command is more flexible, allowing you to query other rmmeasurement arrays
and to download data to measurement arrays.

6-12

Querying Single Data Points Using Markers

If you only need to query a single data point, you can use a marker query
instead of a trace query. The program segment below shows how to do this
using the SCPI command CALC:MARK.

10
20
30
40
50
60
70

ASSIGN @Hp8711 TO 716
! Take sweep here

OUTPUT QHp8711;"CALC1:MARK ON" ! turn on marker
OUTPUT ©Hp8711;"CALC1:MARK1:X 177 MHz" ! get frequency
OUTPUT Q@Hp8711;"CALC1:MARK1:Y?" ! read marker

ENTER QHp8711;Marker_y
DISP Marker_y

You can also use the CALC:MARK:FUNC:RES? query to return the results of a
bandwidth search. For example:

10
20
30
40
50

! Select -3 dB bandwidth

OUTPUT @Hp8711;'"CALC:MARK:BWID -3"

! Get result of bandwidth search

OUTPUT @Hp8711;"CALC:MARK:FUNC:RES?"
ENTER QHp8711;Bwidth,Center_freq,Q,Loss

For more information on using markers, refer to Chapter 8, “Example
Programs.”

B-12

Accessing Other Measurement Arrays

The preceding sections describe how to query the formatted data array using
the TRACE : DATA? query with the argument CHI1FDATA. The formatted array
is the last array in the analyzer’s data processing chain, and is generally of

most interest.

The analyzer also allows you to query other measurement arrays which
are earlier in its data processing chain. Figure 6-2, below, shows the data
processing chain.

Raw Dato

Errar

Corrected

]
]
’ . . |
A.B,RAUX Ratio Correction Averaging Dota J
4
Error Corrected
Coefficient M
Arrays amory W
L” Trace Electrical & ~®1 Formattea [Otfset
Transform Format
Math Deloy 151 Arrays (1 Scole

+—e= Data Trace

=~ Memory Trace

=

Figure 6-2. Numeric Data Flow Through the Network Analyzer

Markers

L.mit Testing

The first array is the Raw Data Array, which contains each of the separate
Input components (A, B, R, X, Y) immediately after they are measured.
These arrays can be queried and set, but doing s0 i1s of limited use, since the
data values contained in the arrays are uncorrected, and are not directly
correlated to any meaningful reference, such as J dBm.

6-14

Trace Data Transfers
Accessing Other Measurement Arrays

The Error Coefficient Arrays contain default correction values or values
created during a measurement calibration. These arrays can be queried

and set, but care should be exercised in setting them since incorrect
measurements may result. If you wish to apply your own corrections in
addition to the analyzer’s current correction, the best technique is to use the
Corrected Memory array and the Data/Memory feature, explained below.

The Corrected Data array contains the results of the currently selected
measurement (Transmission, Reflection, etc.) after error correction and
averaging have been applied. The measurement data in these arrays is
represented as complex number pairs. When measuring the transmission
response of a through cable, the magnitude of the complex numbers will be
very close to 1.0. When measuring an open circuit, the magnitude of the
complex numbers will be very close to 0.0. When measuring an amplifier, th¢
magnitude of the complex numbers will be greater than 1.0.

The Corrected Memory array is filled with a copy of the Corrected Data array
when the Data —> Memory operation is performed. It can be used to apply
a gain correction to the measured data. This is described in the following
section.

The Formatted Data array contains the measurement data after it has been
formatted using the format selected by the [FORMAT] menu. Querying the
Formatted Data array is described in detail at the beginning of this chapter.
You can also download data to this array, and the analyzer will display the
data using the current Scale and Reference values.

6-1¢

Applying Gain Correction Using the
Memory Trace

The Corrected Memory array is filled with a copy of the Corrected Data array
when the Data —> Memory operation is performed. By setting the analyzer
to perform Data/Memory trace math, you can apply your own correction
factor to the measurement data trace by filling the Corrected Memory array
with the appropriate complex numbers.

In general, you should use the analyzer’s calibration feature to correct for
errors in your system. However, there may be cases where you wish to
simulate the effect of adding a cable in series with your DUT, and observe
how this imaginary cable will attenuate the measured response versus
frequency. Or you may wish to apply an absolute offset to simulate the effect
of adding or removing a pad from the measurement. These simulations are
easily accomplished using the Corrected Memory array and the Data/Memory
feature.

The Corrected Data and Memory arrays contain complex linear data, as
opposed to logged data. When displaying the traces using Lin Mag format,
the result of the Data divided by Memory operation (Data/Mem) will be

to divide each point of the data trace by each point of the mermory trace.
When displaying data in Log Mag format, the result of Data/Memory will be
equivalent to subtracting the Log Mag value of the Memory trace fror that of
the Data trace.

6-16

Trace Data Transfers
Agplying Gain Corrsction Using the
Memory Trace

The following example BASIC code segment shows how to download a
complex array from your program to the analyzer’'s Memory trace. The
program’s “Mem” array is initialized with the proper values such that when
the analyzer computes Data divided by Memory, the desired increasing gain
will be applied.

100 REAL Mem(1:201,1:2)
110 ASSIGN QHp8711 TO 716

120 Fill memory array (denominator in Data/Mem)

130 ! with values that will result in an

140 ! upward sloping gain factor vs. frequency.

150 ! Used to compensate for cable loss vs. frequency
!

160 Adds 0 dB of gain at start freq; 3 dB at stop freq
170 FOR Pt=1 TO 201

180 Gain_factor_db=3.0*(Pt — 1)/200 ! 0..3 dB Power
190 Gain_factor_lin=10"(Gain_factor_db/20)

200 Mem(Pt,1)=1.0/Gain_factor_lin ! real

210 Mem(Pt,2)=0.0 ! imag

220 NEXT Pt

230 ! Download to the memory trace

240 OUTPUT @Hp8711;"FORM:DATA ASCII"

250 OUTPUT QHp8711;"TRACE:DATA CH1SMEM"; ! Note the ";"
260 FOR Pt=1 TO 201

270 FOR I=1 TO 2

280 OUTPUT OHp8711;",";Mem(Pt,I); ! Note the ";"
290 NEXT I

300 NEXT Pt

310 OUTPUT @Hp8711;"" ! Send linefeed

320 OUTPUT QHp8711;"CALC1:MATH (IMPL/CHISMEM)" ! Data/Mem

The example above downloads data to the corrected memory array. The data
is sent by the program to the analyzer using ASCI encoding. The data is
sent as ASCII characters, separated by commas. The analyzer accepts the
cormuna separated list of numbers until it receives a linefeed to terminate

the command. The program uses semicolons at the end of some OUTPUT
statements to avoid sending a linefeed until all of the data has been sent.
After the last number is sent, the program sends a linefeed, and the analyzer
accepts the data.

Remermber, for faster transfers, use binary data encoding instead of ASCII.

6-17

Performing Your Own Data Processing

After the analyzer has made a measurement, you can read the measurement
trace and perform your own post-processing on it, and display the result on
the screen. This is done using these steps:

1. Initiate a sweep

2. Wait for the sweep to finish
3.
4
5

Read the measurement data into an array in vour program

. Perform your post-processing on the measurement data

. Write (download) the post-processed data to the analyzer’s memory trace.

You may want to instruct the analyzer to display only the memory trace and
not the data trace, so that only your post-processed data is seen.

6-18

Trace Data Transters
Performing Your Own Data Processing

The program below demonstrates how to perform data post-processing. It
takes the measurement data and reverses it, such that the low frequency
data is displayed on the right end of the trace, and the high frequency data is
displayed on the left.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
235
240
250
260
270
280
290

! Display the measurement data backwards

REAL Fmt(1:201)

ASSIGN QHp8711 TO 716 .
]

OUTPUT @Hp8711;"FORM:DATA ASCII"
OUTPUT QHp8711;"ABOR;INIT:CONT OFF ;*WAI"
OUTPUT @Hp8711;"DISP:WIND:TRAC1 OFF;TRAC2 ON"
LOOP
! Take sweep
OUTPUT Q@Hp8711;"INIT1;*WAI"
! Read the trace from the formatted data array
OUTPUT @Hp8711;"TRACE:DATA? CHiFDATA"
ENTER QHp8711;Fmt(*)
! Download the trace, backwards,
! to the formatted memory array

OUTPUT ©Hp8711;"TRACE:DATA CH1FMEM"; ! Note the ";"
FOR Pt=1 TO 201
OUTPUT @Hp8711;",";Fmt(202-Pt); ! Note the ";"
NEXT Pt
OUTPUT ©OHp8711;"" ! Send linefeed
END LOOP

This example program uses ASCII trace data transfers. Higher speed can be
achieved using binary data transfers. If using IBASIC, high-speed subroutines
can be used for even greater performance. Refer to the [BASIC Handbook for
details.

6-19

Downloading Trace Data Using
Binary Encoding

Data traces can be downloaded to the analyzer using binary encoding.
Using binary encoding is faster than using ASCI encoding. As mentioned
in Chapter 4, the binary encoded trace is transferred as a block; the block
containing a header and a data section. There are two different types of
blocks that can be used: a definite length block, and an indefinite length
block.

To send trace data using a definite length block, your program must calculate
the number of bytes in the data segment of the block, and create a block
header which tells the analyzer how many bytes are in the data segment.

For example, if you are sending a trace with 201 data points and using 64-bit
floating point numbers for each data point (“FORM:DATA REAL,64™), the
block’s data segment will contain 1608 bytes (201 points * 8 bytes/point).
The header characters for a 1608 byte block are: “#41608”. The first digit
after the “#”, “4” tells how many following digits are used to specify the size.
In this case, 4 digits follow, and those digits are “1608”, meaning that the
block contains 1608 bytes.

When you send a definite length block to the analyzer, the analyzer will will
read the data segment bytes, stopping when it receives the number specified
in the block header.

To send trace data using an indefinite length block, your program simply
sends a block header of “#0”, followed by the data segment. After sending
the data segment, your program must terminate the data block by sending an
EOI. The analyzer will read the data segment bytes, stopping when it receives
an EOI To send an EOI using BASIC, you can use the statement:

QUTPUT @Hp8711;END

6-20

Internal Measurement Arrays

The following sections describe the sequence of math operations and the
resulting data arrays as the measurement information flows from the raw
data arrays to the display. This information explains the measurement arrays
accessible via HP-IB.

Figure 6-3 is a data processing flow diagram that represents the flow of
numerical data. The data passes through several math operations, denoted in
the figure by single-line boxes. Most of these operations can be selected and
controlled with the front panel CONFIGURE block menus. The data is stored
in arrays along the way, denoted by double-line boxes. These arrays are
places in the flow path where data is accessible via HP-IB. While only a
single flow path is shown, two identical paths are available, corresponding to
channel 1 and channel 2.

Row Dota Rati Errar ~ . Corrected
A.B.RAUX otio Correction Averaging Dato
4
Error Corrected
Coefficient M
Arrays emory —I
Trace Electrical it Formatted B Offset & Dota Trace
Transform F t
Math Delay erma] Arrays | Scale —=& Memory Troce
|—> Morkers
L= Limit Testing
co62b
Figure 6-3. Numeric Data Flow Through the Network Analyzer

6-21

Havc uJata HalItid

Internal Measurament Arrays

Raw Data Arrays

-

These arrays are linear measurements of the inputs used in the selected
measurement. Note that these numbers are complex pairs. These arrays are
directly accessible via HP-IB and referenced as CH[1|2] AFWD, CH[1 | 2] BFWD

and CH[1|2]RFWD.

Tahl2 6-4. Raw Data Arrays

Selected Measuremant Raw Asrrays
Trensmission {B/R) 8 - CH[1|2]BFWD, R ~ CH[1|2¥RF¥D
Reflection (A/RI A = CH[1|2]AFWD, R = CH[1|2]RFWD
A A - CE[1[2]AFWD
B B = CE[1|2]1BFWD
R R = CE[1|2]RFWD
Power (8°] 8" - CH[1[2]BFWD
Conversion loss {B*/R") B* = CH[1|2]BFWD, R* = CH[1|2]RFWD
R R* = CH[1|2]RFWD
AM Dalay {Y/X) Y « CH{1]2]BFWD, X = CH[1|2]RFWD
X X = CH[1|2]RFWD
Y Y = CH[1|2]BFWD
YR* Y = CH[1|2]BFWD, R" - CH[1|2]RFWD
YIX, XY Y = CH[112]BFWD, X = CE[1|2]RFWD

NOTE

INPUT data.

Aaw data for AUX INPUT is not available via HP-IB. Use the currected data array to access AUX

6-22

Trace Data Transfers
Intarnal Messurement Arrays

Ratio Calculations

These are performed if the selected measurement is a ratio (e.g. A/R or B/R).
This is simply a complex divide operation. If the selected measurement is
absolute (e.g. A or B), no operation is performed.

Error Correction

Error correction is performed next if correction is turned on. Error correction
removes repeatable systematic errors (stored in the error coefficient arrays)
from the raw arrays. The operations performed depend on the selected
measurement type.

Error Coefficient Arrays

The error coefficient arrays are either default values or are created during
a measurement calibration. These are used whenever correction is on.
They contain complex number pairs, and are accessible via HP-IB and are
referenced as CH[1|2]SCORR1, CH[1|2]SCORR2 and CH[1|2]SCORR3.

6-23

Have Udgla tidiRiely

Internal Measurement Aerays

Table 6-5. Error Coefficient Arrays

Salected Measuramant Error Cosfficient Arrays
Trensmission (B/R] CH[{112]SCORR1 - Response
CH[1|2]SCDRR2 =~ Isolgtion
Reflection |A/R) CH[112]SCORR1 = Directivity
CH[112]SCORR2 - Saurce Match
CH{1121SCORR3 =~ Tracking

Broadband Interns| CH[112]SCORR1

R* Response

NOTE

These arrays do not apply to Broadband External measurements.

6-24

Trace Data Transfers
Internal Measurement Arrays

Averaging

Averaging is a noise reduction technique. This calculation involves taking
the complex exponential average of several consecutive sweeps. This
averaging calculation is different than the System Bandwidth setting. System
Bandwidth uses digital filtering, applying noise reduction to the measured
data before it is stored into the Raw Data Arrays.

Corrected Data Arrays

The combined results of the ratio, error correction and averaging operations
are stored in the corrected data arrays as complex number pairs. These
arrays are accessible via HP-IB and referenced as CH[1|2]SDATA.

Corrected Memory Arrays

If the Data—>Mem or Normalize operations are performed, the corrected
data arrays are copied into the corrected memory arrays. These arrays are
accessible via HP-IB and referenced as CH[1|2] SMEM.

6-25

Have uatd Ndidie

Internal Messuremsnt Arrays

Trace Math Operation

This selects either the corrected data array, or the corrected memory array, or
both to continue flowing through the data processing path. In addition, the
complex ratio of the two (Data/Memory) can also be selected. If memory is
displayed, the data from the memory arrays goes through exactly the same
data processing flow path as the data from the data arrays.

& Electrical Delay

This block adds or subtracts phase, based on the settings of Phase Offset,
Electrical Delay, and Port Extension. The Electrical Delay and Port Extension
features add or subtract phase in proportion to frequency. This is equivalent
to “line stretching” or artificially moving the measurement reference plane.
(See the HP 8712B/14B User’s Guide for more details on these features.)

Transform (Option 100 only)

This block converts frequency domain data into distance domain, or into an

SRL impedance value when measuring fault location or SRL. The transform

employs an inverse fast Fourier transform (FI1) algorithm to accomplish the
conversion.

6-26 &P indicates HP 8712B/14B only

Trace Data Transfers

Formatting

This converts the complex number pairs into a scalar representation for
display, according to the selected format (e.g. Log Mag, SWR, etc). These
formats are often easier to interpret than the complex number representation
Note that after formatting, it is impossible to recover the complex data.

Formatted Arrays

The results so far are stored in the formatted data and formatted memory
arrays. It is important to note that marker values and marker functions are
all derived from the formatted arrays. Limit testing is also performed on the
formatted arrays. These arrays are accessible via HP-IB and referenced as
CHL112]FDATA and CH[1|2)FMEM.

Offset and Scale

These operations prepare the formatted arrays for display. This is where the
reference position, reference value, and scale calculations are performed, as
appropriate for the format.

6-27

Hauc watg 11aldicly

~ Using Graphics

Using Graphics

The analyzer has a set of user graphics commands that can be used to create
graphics and messages on the display. The GRAPHICS example program uses
some of these commands to draw a simple setup diagram. These commands,
listed below, are of the form:

DISPlay:WINDow[1|2}10] :GRAPhics:<mnemonic>.

The number specified in the WINDow part of the command selects where the
graphics are to be written.

WINDow1 draws the graphics to the channel 1 meastrement screen.
(This is the default if no window is specified in the
mnemonic.)

WINDow2 draws the graphics to the channel 2 measurement screen.

WINDow10 draws the graphics to an IBASIC display partition. (This

window is only available on instruments with IBASIC —
Option 1C2.)

NOTE

When graphics commands are used to write directly te a measurement screen they write 10 the static
graphics plane (the same plane where the graticule is drawn]. There is no sweep-to-sweep speed
penalty once the graphics have been drawn.

7-2

Using Graphics

Unless otherwise specified, the graphics commands listed below start at the
current pen location. All sizes are dimensioned in pixels.

K' : DISPlay:WINDow([1|2]10] :GRAPhics:CIRCle <y_radius>
DISPlay:WINDow([1|2]10] :GRAPhics:CLEar
DISPlay:WINDow[1]2]10] :GRAPhics:COLor <pen>
e color choices are: O for erase, 1 for bright, 2 for dim
DISPlay:WINDow(112110] :GRAPhics [:DRAW] <new_x>,<new_y>
DISPlay:WINDow[112(10] :GRAPhics:LABel <string>
DISPlay:WINDow[112]10] :GRAPhics:LABel:FONT

e font choices are: SMAL1, HSMall, NORMal, HNORmal, BOLD, HBOLd,
SLANt, HSLant

(H as the first letter of the font name indicates highlighted text - inverse
video).

DISPlay:WINDow[112]10] :GRAPhics :MOVE <new_x>,<new_y>
y DISPlay:WINDow[112]10] :GRAPhics :RECTangle <width>,<height>
) DISPlay:WINDow[1|2]10] :GRAPhics:STATe?

NOTE

There are more screen pixels in the “X” direction than in the “Y" direction. The CIRCle graphics
command compensates for this by drawing an ellipse using a larger X-radius than Y-radius.

7-3

Window Geometry

Even though there are only three graphics windows, these windows can have
different sizes and locations.

The size and location of the graphics window are determined by the display
configuration currently in use — split screen measurements, full screen
measurements, and full or partial IBASIC display partitions will affect the
dimensions of the graphics window in use.

The sizes of the different graphics windows are listed below.

e Channel 1 or channel 2 full screen measurement: width=801 pixels,
height =321 pixels.

e Channel 1 or channel 2 split screen measurement: width=801 pixels,
height=161 pixels.

e [BASIC full screen display: width=_861 pixels, height =352 pixels.
e [BASIC upper display: width=861 pixels, height =160 pixels.
e IBASIC lower display: width=861 pixels, height=158 pixels.

There is a set of queries that can be used to determine the size and location
of the display window in use.

These queries, listed below, return the width and height of the window or the
absolute location of its lower left or upper right corners. All the coordinates
and sizes are dimensioned in pixels.

DISPlay:WINDow[1|2|10] : GEOMetry:LLEFt?
DISPlay:WINDow[1]2]|10] :GEOMetry:SIZE?
DISPlay:WINDow[1|2|10] : GEOMetry:URIGht?

NOTE

The origin of EVERY graphics window is its lower left corner. The locations returned in response 1o
the LLEFt and URIGht are relative to the ABSOLUTE origin of the entire display, NOT to the
graphics window

7-4

The Graphics Buffer

The analyzer has a graphics buffer that is used to refresh the graphics display
if needed. When the buffer is full, additional graphics can still be drawn —
BUT they will not be refreshed. The graphics buffer can be turned on and

off using the following command (which is used in the GRAPHICS example
program).

DISPlay:WINDow:GRAPhics:BUFFer[:STATe] <ON|OFF>
The graphics buffer will hold up to:

500 lines

40 circles

40 rectangles

50 strings (60 characters long)

Use the following command to clear the graphics buffer and user-graphics
display.

DISPlay:WINDow:GRAPhics:CLEar

NOTE

Only graphics that can be refreshed will be printed or plotted. If you intend to print or plot your
graphics, make sure they will fit within the graphics bufier.

7-5

Uathy uilaphiib

- Example Programs

Example Programs

The example programs listed in this manual are all written in IBASIC

(HP Instrument BASIC). An optional internal controller can be purchased
with your analyzer (option 1C2). This controller runs IBASIC directly on the
analyzer. It controls the analyzer over an internal interface bus that operates
the same way as the external HP-IB interface. F'or more information about
IBASIC refer to the HP Instrument BASIC User’s Handbook.

IBASIC is a programming language that developed from HP BASIC. Because
of this relationship, programs written for IBASIC can be run on external
controllers that run HP BASIC.

The example programs are provided on two disks that are included with the
network analyzer. Both disks contain the same examples written in IBASIC:
only the disk format is different. Because the analyzer’s internal 3.5 disk
drive is designed to be both DOS and LIF compatible, either disk can be used
to supply programs for the analyzer’s internal IBASIC controller.

Example Programs Disk - DOS Format HP part number 08712-10001
Example Programs Disk - LIF Format HP part number 08712-10002

Because the examples are designed to run in different environments, the
setup at the beginning of each program must determine the operating
environment and properly set the analyzer’s HP-IB address. In these
exampies, the internal IBASIC controiler uses the address 800 when
communicating with the analyzer (the internal HP-IB is at select code 8).
The default address of 716 is used when the programs are being run on an
external controller.

A version of the following lines is included in all of the example prograrns.
The use of the Internal (internal-controller) flag varies due to differences in
the programs needs.

8-2

10
20
30
40

50
60
70

80

90

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
Internal=1

ELSE

ASSIGN QHp8711 TO 716
Internal=0
ABORT 7

CLEAR 716

END IF

Example Programs

Identify the operating system.
If internal, set address to 800.
Set internal-control flag to 1.

If external, set address to 716.

Set internal-control flag to O.
Abort all bus transactions anc
give active control of the bus t
the computer.

Send a selected device clear (SDC
to the analyzer — this clears al
HP-IB errors, resets the HP-IE
interface and clears syntax er
rors. (It does not affect the statu:
reporiing system.)

8-3

Example Programs

The following table shows the sections and example programs that are

contained in this chapter:
Section Title Example Pragram Program Description -

Configuring Maasurements SETUP Sets up & basic measuremant, demonstrates use of *WAI
LIMITEST Performs automatic pass/feil testing with limit lines

Transfer of Data toffrom the MARKERS Transfers data using markers

Anaiyzer
SMITHMKR! Measurss reflection of a fiiter in Smith chart and poler formats
ASCDATA Transfers data using ASCIl farmat
REALDATA Transfers data using the IEEE B4-bit floating point REAL format
INTDATA Transfers date using the 15-bit INTEGER format

Calibration TRANCAL Performs & trensmission celibration
REFLCAL Performs a reflection caiibration
{OADCALS Uploads and downloads correction arrays
CALKIT This is nor a progrem, it is an instrument state fils for downloading

user-defined cal kit detinitions

Instrument State and Save/Recall | LEARNSTR Uses the learn string to upload end download instrumant states
SAVERCL Saves and recalls instrument states, calibrations and datwe

Hardcopy Control PRINTPLT Uses the serial snd paraliel ports for hardcopy output
PASSCTRL Uses pass control and the HP-18 for herdcopy output
FAST_PRT Provides fast graph dumps to PCLS printers

Service Request SRa Gensrates a service request interrupt

File Transfer Over HP-|B GETFILE Transfers & file from the unaiyzer to an external controller
PUTFILE Transfers a fils from &n external controller to the analyzer

Customized Oisplay GRAPHICS Uses graphics and softkeys to create customized procedures

1 For use wath HP 87128 and 87148 only

| Configuring Measurements

SETUP

LIMITEST

Setting up a basic measurement. The example also
demonstrates the use of the *WAI command.

Performing automatic PASS/FAIL testing with limit lines.
The example also demonstrates some methods of combining
mnemonics for more efficient programming.

8-5

LAUHIpIL LUy lIdiig

Cenfiguring Measuraments

SETUP Example Program

This program demonstrates how to set up the analyzer to make a basic
measurement. The *WAI command is used extensively throughout this
program. This has the effect of making sure that the commands are executed
in the order they are received. More information about making measurements
with the analyzer is available in the User’s Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controtler is being used, set flags, and
prepare the instrument for remote operation.

!Filename: SETUP

1

2 !

3 ! Description:

4 ! Set Channel 1 to measure filter’s transmission.
4 ! Set Channel 2 to measure filter’s reflection
5 ! Prompt user for start and stop freq, and set them.
6 ! Take a sweep.

7 ! Set Scale and Reference levels.

8 !

10 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

20 ASSIGN QHp8711 TO 800

30 ELSE

40 ASSIGN QHp8711 TO 716

50 ABORT 7

60 CLEAR 716

70 END IF

71 !

73 ! Preset the instrument.

80 OUTPUT @Hp8711;"SYST:PRES;*WAI"

81 !

83 ! Configure the analyzer to measure transmission
84 ! of a filter on channel 1. This is the command
85 ! for the BEGIN Filter Transmissn key sequence.
90 OUTPUT QHp8711;"CONF ’FILT:TRAN’;*WAI"

91 !

23 ! Put the instrument in trigger hold mode.

100 OUTPUT QHp8711;"ABOR; :INIT:CONT OFF;*WAI"

8-6

101
103
110
111
113
114
120
121
122
123
124
125
126
127
130
131
132
140
141
142
143
150

151
162
160
161
162
170
171
172
180

181
182
190
191
192
200
201
202

Example Programs
Configuring Measurements

! Turn on channel 2.
OUTPUT QHp8711;"SENS2:STAT ON;*WAI"
]

! Configure channel 2 to measure reflection. This

! is the command for the CHAN 2 Reflection key sequence.
OUTPUT QHp8711;"SENS2:FUNC ’XFR:POW:RAT 1,0’;DET NBAN"

!

! Wait for the previous commands to complete execution
! (respond to the *0PC?).

OUTPUT QHp8711;"*0PC?"

ENTER QHp8711;0pc

1

! Input a start frequency.

INPUT "Enter Start Frequency (MHz):'",Start_f

1

! Input a stop frequency.

INPUT "Enter Stop Frequency (MHz):",Stop_f

!

! Set the start and stop frequencies of the analyzer
! to the values entered.

QUTPUT QHp8711;"SENS2:FREQ:STAR";Start_f;'"MHz;STOP"
;Stop_£;"MHz ; *WAI"

1

! Trigger a single sweep.

OUTPUT @Hp8711;"“INIT;*0PC?"

|

! Wait for the sweep to be completed.
ENTER Q@Hp8711;0pc
}

! Set up the scale and reference parameters for channel 1.
QUTPUT QHp8711;'"DISP:WIND1:TRAC:Y:PDIV 10 DB;RLEV O DB

;RPOS 8"

I

! Now for channel 2.

OUTPUT QHp8711;"DISP:WIND2:TRAC:Y:PDIV 5 DB;RLEV O DB;RPOS 8"
]

! Make channel 1 active (transmission)
OUTPUT @Hp8711;"SENS1:STAT ON"
1

! Display the current start and stop frequencies.

8-7

LAGHIPIG | TUYiaihD

Ceafiguring Maasurements

210 DISP "Done measuring. Start =";Start_f;"MHz
Stop =";Stop_f;'"MHz"
220 END

Example Programs
Configuring Measurements

10
20
30
40
50
60
70
80
81
82
90
91
92
100
101
102
103
110

LIMITEST Example Program

This program demonstrates how to set up and use limit lines over the HP-IB.
The example device used in this program is the demonstration filter that is
shipped with the analyzer. The program sets up the basic measurement,
downloads the limit lines and uses the status registers to determine of the
device passes its specifications. For more information about limit lines, refer
to the User’s Guide. For information about using the status registers, refer tc
the previous section “Using the Status Registers.”

This example also demonstrates how multiple command mnemonics can be
combined together. The easiest commands to combine are ones that are
closely related on the command tree (such as the start and stop frequency
of a limit segment). For more information of command mnemonics, refer to
Chapter 10, “Introduction to SCP1.” :

Lines 20-80 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, anc
prepare the instrument for remote operation.

'Filename: LIMITEST
]
DIM Title$[30]
IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN Q@Hp8711 TO 800
ELSE
ASSIGN QHp8711 TOD 716
ABORT 7
CLEAR 716
END IF
!
! Perform a system preset; this clears the limit table.
QUTPUT QHp8711;"SYST:PRES;*WAI"
|

! Set up the source frequencies for the measurement.
OUTPUT QHp8711;"SENS1:FREQ:STAR 10 MHZ;STOP 400 MHZ;*WAI"
|

! Set up the receiver for the measurement parameters
! (Transmission in this case).
OUTPUT @Hp8711;"SENS1:FUNC ’XFR:POW:RAT 2,0’ ;DET NBAN;*WAI"

8-

111
112
113
120

121
122
123
124
130
131
132
140
141
142
143
144
150
151
162
163
160
161
162
170
171
172
173
180
181
182
190
191
192
200

201
202
203
210
211

CAUILIpIG 0UHIGIIIQ

Configuring Meesurements

]

! Configure the display so measurement

! results are easy to see.

OUTPUT @Hp8711;"DISP:WIND1:TRAC:Y:PDIV 10 DB;
RLEV O DB;RPOS 9"

|

! Reduce the distractions on the display by
! getting rid of notation that will not be
! needed in this example.

OUTPUT @QHp8711;"DISP:ANN:YAX OFF"

1

! Erase the graticule grid for the same reason.
OUTPUT @Hp8711;"DISP:WIND1:TRAC:GRAT:GRID OFF"
. .

! Create and turn on the first segment for

! the new limit lines; this one is a maximum

! limit.

OUTPUT QHp8711;"CALC1:LIM:SEGM1:TYPE LMAX;STAT ON"

1

! Set the amplitude limits for the first limit

! segment.

OUTPUT @Hp8711;"CALC1:LIM:SEGM1:AMPL:STAR -70;STOP -70"
1

! Set the frequency of the first limit segment.

OUTPUT Q@Hp8711;"CALC1:LIM:SEGM1:FREQ:STAR 10 MHZ;STOP 75 MHZ"
[}

! Create and turn on a second maximum limit

! segment.

OUTPUT @Hp8711;"CALC1:LIM:SEGM2:TYPE LMAX;STAT ON"

1

! Set the amplitude limits for segment 2.
OUTPUT @Hp8711;"CALC1:LIM:SEGM2:AMPL:STAR O;STOP O"
1

! Set the frequency range for segment 2.

OUTPUT QHp8711;"CALC1:LIM:SEGM2:FREQ:STAR 145 MHZ
;STOP 200 MHZ"

]

! Create and turn on a third limit segment;

! this one is a minimum limit.

OUTPUT QHp8711;"CALC1:LIM:SEGM3:TYPE LMIN;STAT ON"
]

8-10

212
220
221
222
230

231
232
240
250
260

261
262
263
270
271
272
280
281
282
290
291
292
293
300
301
302
303
310
311
312
313
320
321
322
330
331
332
333
340

Example Programs
Configuring Msasurements

! Set the amplitude limits for segment 3.
OUTPUT @Hp8711;"CALC1:LIM:SEGM3:AMPL:STAR -6;STOP -6"
|

! Set the frequency range for segment 3.

OUTPUT QHp8711;"CALC1:LIM:SEGM3:FREQ:STAR 150 MHZ
;STOP 195 MHZ"

\

! Create and set parameters for segment 4.

OUTPUT QHp8711;"CALC1:LIM:SEGM4:TYPE LMAX;STAT ON"
OUTPUT QHp8711;"CALC1:LIM:SEGM4:AMPL:STAR -60;STOP -60"
OUTPUT @Hp8711;"CALC1:LIM:SEGM4:FREQ:STAR 290 MHZ
; STOP 400 MHZ"

\

! Send an operation complete query to ensure that
! all overlapped commands have been executed.
OUTPUT QHp8711;"“*0PC?"

]

! Wait for the reply.
ENTER QHp8711;0pc
!

! Turn on the display of the limit lines.

OUTPUT QHp8711;"CALC1:LIM:DISP ON"

1

! Turn on the pass/fail testing; watch the

! analyzer’s display for the pass/fail indicator.
OUTPUT QHp8711;"CALC1:LIM:STAT ON"

l .

! Take a controlled sweep to ensure that

! there is real data present for the limit test.
OUTPUT QHp8711;"ABOR;:INIT1:CONT OFF; :INIT1;*WAI"
!

! Query the limit fail condition register to see
! if there is a failure.

OUTPUT @Hp8711;"STAT:QUES:LIM:COND?"

|

! Read the register’s contents.
ENTER Q@Hp8711;Fail_flag
[}

! Bit 0 is the test result for channel 1 while
! bit 1 is the results for channel 2 limit testing.
IF BIT(Fail_flag,0)=1 THEN

8-11

341
342
343
350
351
352
360
361
362
370
371
372
380
381
383
384
390
400
401
402
403
410
420
430
431
432
433
434
440
450

LAglilpgie Fluytdaiis

Configuring Measarements

[}

! In case of failure, give additional direction

! to the operator using the title strings.

Title$="Limit Test FAIL - Tune device"

|

! Turn on the title string.

OUTPUT @Hp8711;"DISP:ANN:TITL1:DATA ’"&Title$&"’;STAT ON"
]

! Turn on continuous sweep mode for tuning.
OUTPUT @Hp8711;"INIT1:CONT ON;*WAI"
]

! Loop while the tuning is taking place.
LOOP
|
! Monitor the status of the limit fail
! condition register.
OUTPUT @Hp8711;"STAT:QUES:LIM:COND?"
ENTER QHp8711;Fail_flag
|
! Check the limit fail bit. Exit if the
! device has been tuned to pass the test.
EXIT IF BIT(Fail_flag,0)=0
END LOOP
END IF
[}
! Turn off the prompt to the operator and
! return the analyzer to the continuously
! sweeping mode.
OUTPUT Q@Hp8711;"DISP:ANN:TITL1 OFF;:INIT:CONT ON;*WAI"
END

8-12

" Transfer of Data to/from the Analyzer

MARKERS

& SMITHMKR

ASCDATA
REALDATA

INTDATA

Transferring data using markers. The example also
demonstrates the use of the query form of command
mnemonics.

Measures reflection of a filter in Smith charE and polar
formats.

Transferring data using the ASCII format.

Transferring data using the IEEE 64-bit floating point REAL
format. The example also demonstrates block data transfers
of both indefinite length and definite length syntax. Also
demonstrated is access to the swapped-byte data format
designed for PCs.

Transferring data using the 16-bit INTEGER format.

&® indicatas HP 8712B/14B only 8-15

LAQUNIC | I UYIgiiin

Transfer of Data to/from the Analyzer

O O~NOO W WN -

MARKERS Example Program

This program demonstrates how to transfer measurement data by using the
markers. Before any data is read over the HP-IB a controlled sweep should
be taken. The analyzer has the ability to process and execute commands
very quickly when they are received over the HP-IB. This speed can lead to
commands (such as marker searches) being executed before any data has
been taken. To ensure that the sweep has completed and the data is present
before it is read, the command for a single sweep is used before data is
requested. Note that *WAI is sent with that command. More information
about making measurements with the analyzer is available in the User’s
Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

!Filename: MARKERS

! Description:
1. Take sweep
2. Set marker to 175 MHz, and query Y value
3. Execute Marker -> Max, and query X and Y
4. Turn on marker tracking
5. Execute a 3 dB bandwidth search
6. Query the result
IF POS(SYSTEM$ ("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
ELSE
ASSIGN QHp8711 TO 716
ABORT 7
CLEAR 716
END IF

1
! Turn on channel 1 and set up start and stop

! frequencies for the example. These frequencies

! were chosen for the demonstration filter that is

! gshipped with the analyzer.

OUTPUT QHp8711;"SENS1:STAT ON;FREQ:STAR 10 MHZ;STOP 400

8-14

Example Programs
Transfer of Data to/from the Analyzer

MHZ ; »WATI"

81 !

82 ! Configure a transmission measurement on channel 1
83 ! using the narrowband detection mode.

90 OUTPUT ©@Hp8711;"SENS1:FUNC ’XFR:POW:RAT 2,0’ ;DET NBAN;*WAI"
91 !

92 ! Take a single controlled sweep and have the
93 ! analyzer wait until it has completed before
94 ! executing the next command.

100 OUTPUT QHp8711;"ABOR; :INIT:CONT OFF; :INIT;*WAI"
101 !

102 ! Turn on the first marker.

110 OUTPUT oHp8711;"CALC1:MARK1 ON"

111 !

112 ! Set marker 1 to a frequency of 175 MHz.

120 OUTPUT QHp8711;"CALC1:MARK1:X 175 MHZ"

121 !

122 ! Query the amplitude of the signal at 175 MHz.
130 OUTPUT @Hp8711;"CALC1:MARK1:Y?"

131 !

132 ! Read the data; the data is in the NR3 format.
140 ENTER QHp8711;Data_1l

150 DISP "Marker 1 (175 MHz) = '";Data_1l

160 WAIT 5

161 !

162 ! Turn on the second marker and use a marker
163 ! search function to find the maximum point
164 ! on the data trace.

170 OUTPUT Q@Hp8711;'"CALC1:MARK2 ON;MARK2:MAX"

171 !

172 ! Query the frequency and amplitude of the

173 ! maximum point. Note that the two queries can
174 ! be combined into one command.

180 OUTPUT @Hp8711;"CALC1:MARK2:X?7;Y?"

181 !

182 ! Read the data.

190 ENTER QHp8711;Freq2,Data2

191 !

192 ! Display the results of the marker search.

200 DISP "Max = '";Data2;"dB at";Freq2/1.E+6;"MHz"
201 !

8-15

202
203
204
210
211
212
213
214
215
220
230
231
232
240
241
242
250
251
252
263
2564
260
261
262
263
270
271
272
280
290
300
310
320
330
340
341
342
350
360

LAQINPIG | 1UYIaiiid

Transfer of Data to/from the Analyzer

! Put the analyzer into its continuously

! sweeping mode. This mode works well for

! tuning applications.

OUTPUT Q@Hp8711;"INIT:CONT ON;=WAI"

!

! Turn on the marker search tracking function.
! This function causes the marker 2 to track

! the maximum value each time the analyzer takes
! a sweep.

OUTPUT QHp8711;"CALC1:MARK2:FUNC:TRAC ON"
WAIT 5

|

! Turn off marker 2.

OUTPUT QHp8711;"CALC1:MARK2 OFF"

1

! Take a single controlled sweep.

OUTPUT QHp8711;"ABOR; :INIT:CONT OFF; :INIT;*WAI"
[}

! Perform a search for the -3 dB bandwidth of
! the filter. This function uses several

! markers to find four key values.

OUTPUT @Hp8711;"CALC1:MARK:BWID -3;FUNC:RES?"
1

! Read the four values: the bandwidth, center
! frequency, Q and the insertion loss.

ENTER @Hp8711;Bwid,Center_f,Q,Loss

]

! Display the results.

DISP "BW: '";Bwid

WAIT 5

DISP "Center Freq: '";Center_f
WAIT &

DISP "Q: ";Q

WAIT 5

DISP "loss: ';Loss

i

! Turn off all the markers.
OQUTPUT @Hp8711;"CALC1:MARK:AQFF"
END

8-16

Example Program:
Transfer of Data to/from the Analyze:

10
20
70
80
90
100

110
120

130
140

‘ 150
160

170
180

190
200
210

220
230
240
250
260
270
280
290
300
310
320

®SMITHMKR Example Program

'Filename: SMITHCHART

Description: Measures a 175 MHz BPF using the
Smith and Polar plot formats. User must connect
the 175 MHz filter between the reflection and
transmission
ports. The program will do the following:

1) Set analyzer to sweep over the filter’s

passband (50 MHz)

2) Set analyzer to Smith Chart format; make a marker
reading (Frequency, Real Impedance in ohms,
Imaginary Impedance
in ohms, Impedance Capacitance or Inductance);
dump the
trace and print S11 Real and Imaginary values
for the
first data point.

3) Set analyzer to Polar Chart format; make

a marker

reading (Frequency, Linear Magnitude in "units",
Phase in degrees); dump the

trace and print S11 Real and Imaginary values
for the

first data point.

13k 3k e sk ke o o ok e ok 3k 3k sk e s 3 sk 3k 3k 3 o o 3 sk ok 3k e ok 3 o 3k 3 2k 3 ok ok 3k ok ok 3K e s 3k ok 3 o 3 ok

DEFINITIONS

REAL Opc,Freq_center,Freq_span,Freq_start,Bpf_q,Bpf_loss
REAL Mrkr_freq,Mrkr_res,Mrkr_reac,Mrkr_ind
REAL Trace_s11(1:201,1:2),Mrkr_mag,Mrkr_phas

13 ke o 3k e 2 3 ok o 3l 3 e o ke ke 3 sl ol 3 o o e 3 3k s ok ke o e e o 2k o e 3 o 3 e e e sk ok 3k o ke e ok ok e ok

Determine computer type

8-1

{

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

490
500

510
520

530

540

550

560

570

580

LAUIIG | IUH!OI“Q

Transfer of Data to/from the Analyzer

CLEAR SCREEN
[}
IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
1if this is an 871ix
ASSIGN QHp871x TO 800
luse 871x internal address
ELSE
!program running on ext computer
ASSIGN QHp871x TO 716
tuse 871x external address
ABORT 7 :
'abort operations on HP-IB
CLEAR 716
END IF

! Preset analyzer, set Center and Span frequencies
[

OUTPUT @Hp871x;"SYST:PRES;*0PC?"

!preset instrument

ENTER Q@Hp871x;0pc

!waits for PRESET to finish before proceeding

1

! Center the filter’s frequency response (to get an
accurate Bandwidth measurement)

]

DISP '"Setting analyzer frequencies..."

!message to user

OUTPUT @Hp871x;"ABOR; :INIT:CONT OFF; :INIT;*=0PC?"

!take a single sweep

ENTER @Hp871x;0pc

'wait for sweep to finish

OUTPUT Q@Hp871x;'"CALC1:MARK:FUNC MAX;*WAI"

!set Marker 1 to max

OUTPUT Q@Hp871x;'"CALC1:MARK:X7;*WAI"

!get Marker frequency setting

ENTER QHp871x;Mrkr_freq

'read frequency of max marker

OUTPUT OHp871x;''SENS1:FREQ:CENT "&VAL$ (Mrkr_freq)

8-18

590

600
610

620
630

640

650

660

670

680

690
700
710
720
730
740
750
760
770
780
790
800

810

Example Programs
Transfer of Data te/from the Analyzer

&" HZ;*WAI" !'set Center Freq

OUTPUT QHp871x;"SENS1:FREQ:SPAN 200 MHZ;*WAI"

!set Span Freq = 200 MHz

]

! Measure Bandwidth, set Center to band center,
Span to 50 MHz

1

OUTPUT @Hp871x;"ABOR; :INIT:CONT OFF; :INIT;*0PC?"

'take a single sweep

ENTER @QHp871x;0pc

'wait for sweep to finish

OUTPUT @Hp871x;'"CALC1:MARK:FUNC BWID;*0PC?"

tsearch filter for -3dB bandwidth

ENTER QHp871x;0pc

'wait for bandwidth to be found

OUTPUT Q@Hp871x;"CALC1:MARK:FUNC:RES?"

!read the bandwidth data

ENTER QHp871x;Freq_span,Freq_center,Bpf_q,Bpf_loss

'read in data

OUTPUT QHp871x;"SENS1:FREQ:CENT "&VAL$(Freq_center)g"
HZ;*WAI" !set Center Freq

OUTPUT QHp871x;"SENS1:FREQ:SPAN 50 MHZ;*WAI"

Iset Span Freq to 50 MHz (passband)

I}

! Set marker 1 to beginning of trace

[}

OUTPUT ©@Hp871x;"CALC1:MARK:AOFF ; *WAI"
!clear all markers

QUTPUT Q@Hp871x;"CALC1:MARK1 ON"

'turn on marker 1

OUTPUT QHp871x;'"SENS1:FREQ:STAR?"

!get start frequency

ENTER QHp871x;Freq_start

!lenter start freq

OUTPUT @Hp871x;"CALC1:MARK1:X "&VAL$(Freq_start)
&" ;%QPC?" Iset marker to start freq
ENTER QHp871x;0pc

!'wait for all previous commands to finish
1

8-19

RAULIIPIG) lUleIIIIO

Transfer of Deta to/from the Analyzer wr

820 ettt bb b bbbt bt B b
830 ! Set to Reflection mode & Smith Chart format.
840 !
850 DISP "Setting to Smith Chart format..."
860 OUTPUT QHp871x;"ABOR; :INIT1:CONT ON;*WAI"
!set to Cont Sweep mode so can select reflection
870 OUTPUT QHp871x;"SENS1:FUNC ’XFR:POW:RAT 1,0’
;DET NBAN;*WAI" ICHANi=reflection
880 OUTPUT QHp871x;"CALC1:FORM SMIT;*WAI"
!set smith chart format
890 !
900 e e it
910 ! Read marker information from Smith Chart
920 ! '
930 OUTPUT @Hp871x;"ABOR;:INIT:CONT OFF; :INIT;*QPC?"
!force one sweep before read markers
840 ENTER @Hp871x;0pc
!wait for sweep to finish
950 OUTPUT QHp871x;"ABOR;:INIT1:CONT ON;=*=WAI"
!set to Continuous Sweep mode
960 OUTPUT QHp871ix;"CALC1:MARK:X7?"
'read marker frequency
970 ENTER QHp871ix;Mrkr_freq
'units are in Hz
980 OUTPUT QHp871x;"CALC1:MARK:Y:RES?"
!read real part of marker impedance
990 ENTER QHp871x;Mrkr_res
'units are in ohms
1000 OUTPUT QHp871x;'"CALC1:MARK:Y:REAC?"
'read imaginary part of marker impedance
1010 ENTER QHp871x;Mrkr_reac
'units are in ohms
1020 OUTPUT @Hp871x;'CALC1:MARK:Y:IND?"
!read inductance (or capacitance)
1030 ENTER QHp871x;Mrkr_ind

'units are Henries if positive value, Farads if negative T
1040 !
1050 t--=-----ommmmmeccece oo mm e
1060 ! Display Smith Marker data
1070 !

1080 Mrkr_freq=DROUND(Mrkr_freq,3) o

8-20

1090

k\’ 1100

1110
1120

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
- 1320

1330

Example Programs
Transfer of Data to/from the Analyzer

'round frequency to 3 digits

DISP "Smith Marker Frequency = "&VAL$(Mrkr_freq)

&"Hz" !display frequency

WAIT 3

1

Mrkr_res=DROUND(Mrkr_res,3)

'round resistance to 3 digits

DISP "Smith Marker Resistance = "&VAL$(Mrkr_res)

& n Ohms n

WAIT 3

]

Mrkr_reac=DROUND(Mrkr_reac,3)

!round reactance to 3 digits

DISP "Smith Marker Reactance = "&VAL$(Mrkr_reac)

& L] ohms u

WAIT 3

1

Mrkr_ind=DROUND(Mrkr_ind,3)

!round inductance to 3 digits

IF Mrkr_ind<O THEN

!label as capacitance if negative
DISP "Smith Marker Capacitance = "&VAL$(-Mrkr_ind)
&"F" !label capacitance

ELSE

!label as inductance if positive
DISP "Smith Marker Inductance = "&VAL$(Mrkr_ind)
&UH" !label inductance

END IF

WAIT 3

! Read Smith Chart formatted trace data, display
first data point.

! Data is transferred in ASCII format with 3
significant digits.

! S11 trace data is read out as: Real data for
point #1, Imaginary data

! for point #1, Real data for point #2, Imaginary
data for point #2...

! Since instrument was preset, number of trace data
points

8-21

LAaginpie iuyialin

Transfer of Data to/from the Analyzer

1340 ! defaults to 201.
1350 !
1360 OUTPUT @Hp871x;"FORM:DATA ASC,3;:TRAC? CH1FDATA"
!set up to read ASCII data, 3 digits
1370 ENTER QHp871x;Trace_si11(*)
!read trace data, real & imaginary pairs
1380 !
1380 ! Display data
1400 !
1410 DISP "Smith Trace Point #1: S11(REAL) =
"gVAL$ (Trace_s11(1,1))&" Units" !display Real data
1420 WAIT 3
1430 DISP "Smith Trace Point #1: S11(IMAGINARY) =
"&VAL$(Trace_s11(1,2))&" Units"
'display Imaginary data

1440 WAIT 3

1450 !

1460 !4++++++++t+++tt+t++tt++tt+tttt+t+ttrr bbbttt bttt ++4
1470 ! Set to Polar Chart Format, read Polar Markers

1480 !

1490 DISP "Setting to Polar Format..."
15600 OUTPUT QHp871ix;"CALC1:FORM POL;*WAI"
!set polar chart format
1510 OQOUTPUT QHp871x;"CALC1:MARK:X?"
'read marker frequency
15620 ENTER @Hp871x;Mrkr_freq
'units are in Hz
1530 OUTPUT Q@Hp871x;"CALC1:MARK:Y:MAGN?"
'read magnitude marker reflection coefficient
1540 ENTER Q@Hp871x;Mrkr_mag
'magnitude in "units"
1550 OUTPUT @Hp871x;"CALC1:MARK:Y:PHAS?"
!read phase of marker reflection coefficient
1660 ENTER Q@Hp871x;Mrkr_phas
'units are in degrees

15670 ! ~
1580 === o m o m o o e e m——me-

1590 ! Display Polar Marker data
1600 !
1610 Mrkr_freq=DROUND(Mrkr_freq,3)
!round frequency to 3 digits it

8-22

1620

1630
1640
1650

1660

1670
1680
1690

1700

1710
1720
1730
1740
1750

1760

1770
1780

1790

1800
1810
1820
1830

1840
1850

1860
1870
1880
1890
1900

Example Programs
Transfer of Data te/from the Analyzer

DISP "Polar Marker Frequency = "&VAL$(Mrkr_freq)&"Hz"

!display frequency

WAIT 3

]

Mrkr_mag=DROUND (Mrkr_mag,3)

'Tound magnitude to 3 digits

DISP "Polar Marker Magnitude = "&VAL$(Mrkr_mag)

&" Units" !display magnitude

WAIT 3

|

Mrkr_phas=DROUND(Mrkr_phas,3)

!round phase to 3 digits

DISP "Polar Marker Phase = "&VAL$(Mrkr_phas)

&'" Degrees"” 'display phase

WAIT 3

I

| o e e e e e e e 2 o e e e 0 e e e o e e

! Read Polar Chart trace data, display first data point.

! S11 trace data is read out as: Real data for
point #1, Imaginary data

! for point #1, Real data for point #2, Imaginary data
for point #2...

t

OUTPUT @Hp871x;"FORM:DATA ASC,3;:TRAC? CH1FDATA"

!set up to read ASCII data, 3 digits

ENTER QHp871x;Trace_s11(*)

'read trace data, real & imaginary pairs

1

! Display data
1

DISP "Polar Trace Point #1: S11(REAL) =
"&VAL$(Trace_s11(1,1))&" Units" !display Real data

WAIT 3

DISP "Polar Trace Point #1: S11(IMAGINARY) =

"gVAL$ (Trace_s11(1,2))&" Units" ‘!display Imaginary data
WAIT 3

DISP "" !clear display line

]

STOP

END

8-2

LAGlIpiE [ugidi

Transfer of Data to/from the Analyzer

ASCDATA Example Program

This program demonstrates how to read data arrays from the anaiyzer
and write them back again. The ASCii data format is being used with a
resolution of 5 digits. More information about data transfer is available
in Chapter 4, “Data Types and Encoding,” and Chapter 6, “Trace Data
Transfers.”

In addition to the channel 1 formatted data array used in this example, there
are a number of arrays that can be accessed inside the instrument. These
arrays and their corresponding mnemonics are listed in Chapter 6 in Table 6-4

and Table 6-5.
1 !Filename: ASCDATA
2 !
3 ! Description:
4 ! 1. Takes a sweep, and reads the formatted
5 ! data trace into an array. The trace
6 ! is read as a definite length block.
7 ! 2. Instructs you to remove DUT
8 ! 3. Downloads the trace back to the analyzer
9 ! as an indefinite length block.
10 REAL Data1(1:51)
20 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
30 ASSIGN QHp8711 TO 800
40 ELSE
50 ASSIGN QHp8711 TO 716
60 ABORT 7
70 CLEAR 716
80 END IF
81 !
82 ! Set the analyzer to measure 51 data points.
90 OUTPUT QHp8711;"SENS1:SWE:POIN 51;*WAI"
o1 !
92 ! Take a single sweep, leaving the analyzer
93 ! in trigger hold mode.
100 OUTPUT Q@Hp8711;"ABOR;:INIT1:CONT OFF; :INIT1;*WAI"
101 !
102 ! Set up the ASCII data format with §

8-24

103
110

’ 111
K_, 112
113

115

116

117

120

121

122

130

131

132

133

140

141

142

143

| 150
. 160
161

162

165

166

167

170

175

180

181

182

183

184

185

190

191

192

> 193
194

195

200

Example Programs
Transfer of Data to/from the Analyzer

! significant digits
OUTPUT @Hp8711;"FORM:DATA ASC,5"
!

! request the channel 1 formatted data array
! from the instrument.

OUTPUT @Hp8711;"TRAC? CHiFDATA"

1

! Get the data and put into data array Datal.
ENTER QHp8711;Datal(*)
]

! Display the first 3 numbers in the array.
DISP "Trace: ";Datai1(1);Datai(2);Datal(3);"..."
]

! Use the wait time to visually compare the

! numbers to the visible data trace.

WAIT 5

!

! Prompt the operator to disconnect the test

! device and then how to continue the program.
DISP "Disconnect the test device -- Press Continue"
PAUSE

1

! Update the display line.

DISP "Taking a new sweep...";

!

! Take a sweep so the display shows new data.
OUTPUT ©Hp8711;":INIT1;*WAI"

DISP " Done."

WAIT 5

1

! Prepare the analyzer to receive the data.

! Suppress the "end'" character by using a

! semicolon at end of output statement.

DISP "Downloading saved trace...";

OUTPUT Q@Hp8711;"TRAC CH1FDATA";

1

! Send the data array one point at a time,
! using the semicolon at the end of the
! output statement to suppress the

! end character.

FOR I=1 TO 51

8-25

LAQIIMIG | Iuylgiia

Transfer of Data to/from the Analyzer

210 OUTPUT @Hp8711;", ";Datal(I);

220 NEXT I

221 !

222 ! Now send the end character. .

230 OUTPUT @Hp8711;""
240 DISP " Done!"
250 END

8-28

Example Programs
Transter of Data to/from the Analyzer

REALDATA Example Program

This program demonstrates how to read data arrays from the analyzer and
write them back again. The REAL, 64 data format is being used. Note that
the analyzer outputs the data using the definite length block syntax. This
example uses the indefinite length block syntax when data is being written
back to the analyzer. More information about data transfer is available

in Chapter 4, “Data Types and Encoding.” All of the arrays listed in the
ASCDATA example section can also be accessed using this data format.

Lines 30-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 20-80 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

{Filename: REALDATA

[}
! Description:

! 1. Takes a sweep, and reads the formatted

! data trace into an array. The trace

! is read as a definite length block.

! 2. Instructs you to remove DUT

! 3. Downloads the trace back to the analyzer
! as an indefinite length block.

10 DIM A$[10],Datal(1:51)

20 INTEGER Digits,Bytes

30 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

O oo~ d WN -

40 ASSIGN QHp8711 TO 800

50 ELSE

60 ASSIGN Q@Hp8711 TO 716

70 ABORT 7

80 CLEAR 716

920 END IF

91 !

92 ! Set up the analyzer to measure 51 data points.

8-27

LAUILIPIG 1 UH“NHO

Transfer of Data to/from the Analyzer

100
101
102
103
110
111
112
120
121
130
140
160
161
162
163
164
170
171
173
174
175
176
180
181
182
183
184
185
190
191
192
193
194
200
201
202
210
211
212
220
221

OUTPUT @Hp8711;"SENS1:SWE:POIN 51;*WAI"
]

! Take a single sweep, leaving the analyzer

! in trigger hold mode.

OUTPUT @Hp8711;"ABOR; : INIT1:CONT OFF; :INIT1;*WAI"
1

! Select binary block transfer
QUTPUT @Hp8711;"FORM:DATA REAL,64"
!

! Request the channel 1 formatted data array
! from the analyzer.

QUTPUT @Hp8711;"TRAC? CH1FDATA"

1

! Turn' on ASCII formatting on the I/0 path.
! It is needed for reading the header

! information.

ASSIGN QHp8711;FORMAT ON

!

! Get the data header. "A$" will contain the

! "#" character indicating a block data transfer.
! "Digits" will contain the number of characters
! for the number of bytes value which follows.
ENTER QHp8711 USING "%,A,D";A$,Digits
1

|

|

|

|

Get the rest of the header. The number of
bytes to capture in the data array will be
placed in "Bytes". Note the use of "Digits"
in the IMAGE string.

ENTER Q@Hp8711 USING "% ,"&VAL$(Digits)&"D";Bytes

|

! Turn off ASCII formatting con the I/0 path;

! it is not needed for transferring binary

! formatted data.

ASSIGN QHp8711;FORMAT OFF

|

! Get the data.

ENTER @Hp8711;Datal(*)

I

! Turn on ASCII formatting again.
ASSIGN C@Hp8711;FORMAT ON

!

8-28

222
230
231
232
240
241
242
243
250
251
252
253
260
270
271
272
275
276
277
280
285
290
291
292
293
295
300
301
302
310
311
312
320
321
322
330
340
350

Example Programs
Transfer of Data to/from the Analyzer

! Get the "end of data' character.
ENTER QHp8711;A$
[}

! Display the first three numbers in the array.
DISP "Trace: ";Data1(l);Datai1(2);Data1(3);"..."
|

! Use this time to visually compare the

! numbers to the visible data tracs. -

WAIT 5

]

! Prompt the operator to disconnect the test

! device and how to continue the program.

DISP "Disconnect the test device -- Press Continue"
PAUSE

|

! Update the display line.

DISP "Taking a new sweep...";

!

! Take a sweep so the display shows new data.
OUTPUT @Hp8711;":INIT1;*WAI"

DISP " Done."

WAIT 5

!

! Send the header for an indefinite block length
! data transfer.

DISP "Downloading saved trace...";

OUTPUT ©Hp8711;"TRAC CHiFDATA, #0";

1}

! Turn off ASCII formatting.

ASSIGN QHp8711;FORMAT OFF

!

! Send the data array back to the analyzer.
OUTPUT @Hp8711;Datal(*),END

t

! Turn on ASCII formatting again.

ASSIGN ®Hp8711;FORMAT ON

DISP " Done!"

END

8-29

LA@IpIE T 1UYiding

Transfer of Date to/from the Analyzer e

INTDATA Example Program

This program demonstrates how to read data arrays from the analyzer and
write them back again. The INTeger, 16 data format is being used. This data
format is the instrument’s internal format. It should only be used to read
data that will later be returned to the instrument.

The data array dimensioned in line 20 is different from the arrays in either
REAL, 64 or ASCii examples. This is because each data point is represented
by a set of three 16-bit integers. Another difference in using this data format
is that all arrays cannot be accessed with it. The formatted data arrays
CH1FDATA and CH2FDATA cannot be read using the INTEGER format.

Note that the analyzer outputs the data using the definite length block
syntax. This example uses the indefinite length block syntax when data is
being written back to the analyzer. More information about data transfer is
available in Chapter 4, “Data Types and Encoding.”

Lines 30-70 are explained in the introduction Lo the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: INTDATA

[
! Description:

! 1. Takes a sweep, and reads the formatted

! data trace into an array. The trace

! is read as a definite length block.

! 2. Instructs you to remove DUT

! 3. Downloads the trace back to the analyzer
! as an indefinite length block.

10 DIM A$[10]

20 INTEGER Digits,Bytes,Datal(1:51,1:3)

30 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

OO ~NOOd WN -~

40 ASSIGN QHp8711 TO 800 |

50 ELSE N
60 ASSIGN QHp8711 TO 716

70 ABORT 7

80 CLEAR 716

90 END IF »

91

93

100
101
102
103
110
111
112
120
121
130
140
160
161
162
163
170
171
172
173
174
175
180
181
182
183
184
185
190
191
192
193
194
200
201
202
210
211
212
220

Example Programs
Transter of Data toffrom the Anslyzer

1

! Set up the analyzer to measure 51 data points.
OUTPUT QHp8711;'"SENS1:SWE:POIN 51;*WAI"

1

! Take a single sweep, leaving the analyzer

! in trigger hold mode.

OUTPUT QHp8711;"ABOR;:INIT1:CONT OFF;:INIT1;*WAI"
]

! Select binary block transfer
OUTPUT QHp8711;"FORM:DATA INT,16"
!

! Request the channel 1 unformatted data array
! from the analyzer.

OUTPUT QHp8711;"TRAC? CH1SDATA"

!

! Turn on ASCII formatting on the I/0 path;

! it is needed for reading the header information.
ASSIGN CHp8711;FORMAT ON

!

! Get the data header. "A$" will contain the

! "#" character indicating a block data transfer.
! "Digits"” will contain the number of characters

! for the number of bytes value which follows.
ENTER @Hp8711 USING "% ,A,D";A$,Digits
!
'
1
1
1

Get the rest of the header. The number of
bytes to capture in the data array will be
placed in "Bytes'. Note the use of "Digits"
in the IMAGE string.
ENTER @Hp8711 USING "% ,"&VAL$(Digits)&"D";Bytes
|

! Turn off ASCII formatting on the I/0 path;
! it is not needed for transferring binary

! formatted data.

ASSIGN QHp8711;FORMAT OFF

!

! Get the data.
ENTER QHp8711;Datal(x)
\

! Turn on ASCII formatting again.
ASSIGN QHp8711;FORMAT ON

8-31

LAUNIPIL | EuYI U

Transfer of Data to/from ths Analyzer

221
222
230
231
232
233
234
235
240
250
251
252
253
260
270
271
272
275
276
277
280
285
290
291
292
293
295
300
301
302
310
311
312
320
321
322
330
340
350

! Get the "end of data" character.
ENTER ©Hp8711;A$

|

! Display the first 3 numbers; there will
! be no visible similarity between these
! numbers and the data displayed on the

! analyzer.

DISP "Trace: ";Datal(1,1);Datal1(1,2);Data1(1,3);"..."

WAIT 5

|

! Prompt the operator to disconnect the test
! device and how to continue the program.
DISP "Disconnect the test device -- Press Continue"
PAUSE

1

! Update the display line.

DISP "Taking a new sweep...'";

1

! Take a sweep so the display shows new data.
OUTPUT Q@Hp8711;":INIT1;*WAI"

DISP " Done."

WAIT §

]

! Send the header for an indefinite block length
! data transfer.

DISP "Downloading saved trace...";

OUTPUT @Hp8711;"TRAC CH1SDATA, #0";

|

! Turn off ASCII formatting.

ASSIGN QHp8711;FORMAT OFF

|

! Send the data back to the analyzer.

OUTPUT @Hp8711;Datal(*),END

]

! Turn on ASCII formatting.

ASSIGN QHp8711;FORMAT ON

DISP "Done!"

END

8-32

" Calibration

TRANCAL Performing a transmission calibration. The calibration is
User Defined (performed over the instruments current
source settings). This example also demonstrates the use of
the *0PC? command.

REFLCAL Performing a reflection calibration. The calibration is Full
Band (performed over the instrument’s preset source
settings). This example also demonstrates the detection of
front panel key presses, the use of softkeys, and the use of
the *0PC? command.

LOADCALS Uploading and downloading correction arrays. The data
transfer is performed in the 16-bit integer format. The
arrays must be dimensioned properly for both the number of
data points and the format of the data being transferred.

CALKIT Instrument state file for downloading User Defined cal
kit definitions. This example is NOT a program. It is an
instrument state file example. This type of file enables the
user to calibrate the analyzer for use with connector types
that are not in the firmware. See “Writing and Editing Your
Own Cal Kit File” in Chapter 6 of the User’s Guide.

8-33

LAGiipiE Fiuyidiiin

Calibration

TRANCAL Example Program

This program demonstrates a transmission calibration performed over

user-defined source settings (frequency range, power and number of points).

The operation complete query is used at each step in the process to make

sure the steps are taken in the correct order. More information on calibration

is available in the User’s Guide.

Lines 10-70 are explained in the introduction to the example programs

section. They determine which system controller is being used, set flags, and

prepare the instrument for remote operation.

91
92
93
94
100
101
102

! Filename: TRANCAL

|

! Guide user through a transmission cal.
!

IF POS(SYSTEM$("'SYSTEM ID"),"HP 871') THEN
ASSIGN Q@Hp8711 TO 800
ELSE
ASSIGN @Hp8711 TO 716
ABORT 7
CLEAR 716
END IF
|
! Configure the analyzer to measure transmission
! on channel 1.
OUTPUT QHp8711;"SENS1:FUNC ’XFR:POW:RAT 2,0’
;DET NBAN; *WAI"
|
! Select a calibration kit type.
OUTPUT QHp8711;"SENS:CORR:COLL:CKIT ’COAX,7MM,
TYPE~-N,50,FEMALE’ "
)
! Select a transmission calibration for the current
! analyzer settings. The "IST:0FF" ensures that
! the current settings will be used.
QUTPUT @QHp8711;"SENS1:CORR:COLL:IST OFF;METH TRAN1"
[

! Prompt the operator to make a through

8-34

103
110
120
130
131
132
140
141
142
150
160
161
162
163
164
165
166
167
170
171
172
173
180
190
200

Exampie Programs
Calibration

! connection.
DISP "Connect THRU - Press Continue"
PAUSE

DISP "Measuring THRU"

!

! Analyzer measures the through.

OUTPUT @Hp8711;"SENS1:CORR:COLL STAN1;*0PC?"
!

! Wait until the measurement is complete.
ENTER QHp8711;0pc

DISP "Calculating Error Coefficients"

]

! Tell the analyzer to calculate the

! error coefficients after the measurement
! is made, and then save for use during

! subsequent transmission measurements.

! Note that this is not the same as using
! the SAVE RECALL key functionality.
OUTPUT @Hp8711;"SENS1:CORR:COLL:SAVE;*0PC?"
|

! Wait for the calculations and save to be

! completed.

ENTER QHp8711;0pc

DISP "User Defined TRANSMISSION CAL COMPLETED!"
END

8-35

Example Programs
Calibration

111
113
120

121
123
124
1285

REFLCAL Example Program

This program demonstrates a reflection calibration performed over the
preset source settings (frequency range, power and number of points). The
operation complete query is used at each step in the process to make sure
the steps are taken in the correct order. More information on calibration is
available in the User’s Guide.

Lines 20-100 are explained in the introduction to the example programs
section. They determine which system controiler is being used, set flags, and
prepare the instrument for remote operation.

'Filename: REFLCAL
1
! Guide user through a reflection cal.
]
DIM Msg$[50]
IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
Internal=1
ELSE
ASSIGN QHp8711 TO 716
Internal=0
ABORT 7
CLEAR 716
END IF
[}
! Configure the analyzer to measure
! reflection on channel 1.
OUTPUT QHp8711;"SENS1:FUNC ’XFR:POW:RAT 1,0’
;DET NBAN;*WAI"
i
! Select Calibration Kit for 50 ohm instruments.
OUTPUT @Hp8711;"SENS:CORR:COLL:CKIT ’COAX,7MM,
TYPE-N,50,FEMALE’ "
1
! Select Calibration Kit for 75 ohm instruments.
! (Comment out the 50 ohm line above and uncomment the line
! below.)

8-36

Example Programs
Calibration

127 ! OUTPUT QHp8711;"SENS:CORR:COLL:CKIT ’COAX,7MM,
TYPE-N,75,FEMALE’ "
128 !
kh_ 129 ! Select a reflection calibration for the current
130 ! analyzer settings. The "IST:0FF" ensures that
131 ! current settings will be used.
133 OUTPUT QHp8711;"SENS1:CORR:COLL:IST OFF;METH REFL3"
134 .
135 ! Prompt the operator to connect an open.

140 Msg$="Connect OPEN"
150 GOSUB Get_continue
160 DISP "Measuring OPEN"

161 !
162 ! Measure the open.
170 OUTPUT @Hp8711;"SENS1:CORR:COLL STAN1;*0PC?"
171 !
172 ! Wait until the measurement of the open
173 ! is complete.
180 ENTER QHp8711;0pc
181 J
~ 182 ! Prompt the operator to connect a short.

190 Msg$="Connect SHORT"
200 GOSUB Get_continue
210 DISP 'Measuring SHORT"

211 !

212 ! Measure the short.

220 OUTPUT QHp8711;"SENS1:CORR:COLL STAN2;*0PC?"
221 !

222 ! Wait until measurement of the short

223 ! is complete.

230 ENTER @Hp8711;0pc

231 !

232 ! Prompt operator to connect a load.

240 Msg$="Connect LOAD"
250 GOSUB Get_continue
260 DISP "Measuring LOAD"

261 !

262 ! Measure the load.

270 OUTPUT @Hp8711;"SENS1:CORR:COLL STAN3;*0PC?"
271 ! Wait until measurement of the load

272 ! is complete.

8-37

280
290
291
292
293
294
2956
296
297
300
301
302
303
310
320
330
331
340
341
342
343
350
351
362
353
360
361
362
363
370
380
390
400
401
402
403
410
411
412
420
421

LAQIIPIE | luygianie

Calibration

ENTER Q@Hp8711;0pc

DISP "Calculating Error Coefficients"”

[}

! Tell the analyzer to calculate the

! error coefficients, and then savs

! for use during subsequent reflection
! measurements. Note that this is not
! the same as using the SAVE RECALL key
! functionality.

OQUTPUT QHp8711;'SENS1:CORR:COLL:SAVE;*QPC?"
i

! Wait for the calculations to be completed
! and the calibration saved.
ENTER @Hp8711';0pc
DISP "Full Band REFLECTION CAL COMPLETED!"
STOP
t
Get_continue: ! Subroutine to handle operator prompts.
[}
! "Internal" is determined above based on the
! controller.
IF Internal=1 THEN
]
! If internal control, then use the display
! 1line for the prompt.
DISP Msg$&" - Press Measure Standard"
{

! Use the softkey 2 for the response; loop
! while waiting for it to be pressed.
ON KEY 2 LABEL "Measure Standard" RECOVER Go_on
Loop
END LOOP
ELSE
[}
! If external control, clear the key queue
! so previous key presses will not interfere.
OUTPUT @Hp8711;"SYST:KEY:QUE:CLE"
[}
! Use the BEGIN key for the response.
DISP Msg$&" - Press BEGIN to continue"
1

8-38

Example Programs
Calibration

422 ! Turn on the key queue to trap all key
423 ! presses.

430 OUTPUT QHp8711;"SYST:KEY:QUE ON"

431 !

432 ! Loop while waiting for a key to be
433 ! pressed.

440 LOOP

441 ! Query the device status condition
442 ! register.

450 OUTPUT @Hp8711;"STAT:DEV:COND?"

460 ENTER @Hp8711;Dev_cond

461 !

462 ! Check the bit that indicates a key press.
470 IF BIT(Dev_cond,0)=1 THEN

480 OUTPUT QHp8711;"SYST:KEY?"

490 ENTER QHp8711;Key_code

500 END IF

501 !

502 ! Stop looping if the BEGIN key was pressed.
510 EXIT IF Key_code=40

520 END LOOP

530 Key_code=0

540 END IF

541 !

550 Go_on: ! Subroutine to turn off the softkeys
5561 ! on the analyzer and the computer,
5583 ! and return to main body of the
554 ! program.

560 OFF KEY

570 RETURN

580 END

8-39

LAUIIIMIG) oy aiig

Calibration

LOADCALS Example Program

This program demonstrates how to read the correction arrays from the
analyzer and write them back again. The INTeger, 16 data format is being
used because the data does not need to be interpreted, only stored and

retrieved. More information about calibration 1s available in the User’s Guide.

The size of the arrays into which the data is read is critical. If they are not
dimensioned correctly the program will not work. Most correction arrays,
including the factory default (DEF) and the full band (FULL, preset source
settings) arrays have 801 points. For user defined calibrations (USER) the
number of points must be determined. If the number of points is other than
801, lines 30 and 280 will need to be changed to allocate arrays for the
correct number of points. The number of points can be found by reading the
correction array’s header and determining the size as shown in the example
below.

Lines 40-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

‘Filename: LOADCALS

1
! Description:

! 1. Query the calibration arrays, based on
! the current measurement (trans/refl).
! 2. Change number of points to 801

! 3. Download the calibration arrays back

! into the analyzer.

O 0 ~N® O WwN e~

10 DIM Func$[20],4$[10]

20 INTEGER Swap,Arrays,Digits,Bytes,Points

30 INTEGER Corr1(1:801,1:3),Corr2(1:801,1:3)
,Corr3(1:801,1:3)

40 IF POS(SYSTEM$("SYSTEM ID"),"HP 871'") THEN

50 ASSIGN @Hp8711 TO 800
60 ELSE

70 ASSIGN QHp8711 TO 716
80 END IF

81 !

90

120
121
122
130
131
132
133
140
141
143
144
145
150
151
162
183
160
161
162
163
164
170
171
172
173
180
190
191
192
200
201
202
210
220
221
222
230
231
232
233

Example Programs
Calibration

! Query the measurement parameter.
OUTPUT @Hp8711;"SENS1:FUNC?"
]

! Read the analyzer’s response.
ENTER @Hp8711;Func$
1

! Set up a SELECT/CASE depending on the
! response.
SELECT Func$
[
! This is the transmission case, a ratio of
! the powers measured by detector 2 (B) and
! detector 0 (R).
CASE """XFR:POW:RAT 2, o"""
!
! The transmission calibration has only one
! correction array.
Arrays=1

[}
! This is the reflection case, a ratio of
! the powers measured by detector 1 (A) and
! detector 0 (R).
CASE """XFR:POW:RAT 1, o"n®
]
! The reflection calibration has 3 correction
! arrays.
Arrays=3
END SELECT
|
! Select the 16 bit integer binary data format.
OUTPUT ©Hp8711;"FORM:DATA INT,16"
1

! Select normal byte order.
OUTPUT @Hp8711;"FORM:BORD NORM"
|

! Request the first correction array from the a
! analyzer.

OUTPUT @Hp8711;"TRAC? CHiSCORR1"

|

! Turn on ASCII formatting on the I/0 path
! to read the header information.

8-41

LAMIHIPIC L TuyIaine

Calibration

240 ASSIGN CHp8711;FORMAT ON

241 !

242 ! Get the header, including the number of

243 ! of characters that will hold the number .
244 ! of bytes value which follows.

250 ENTER QHp8711 USING "%,A,D";A$,Digits

2561 !

252 ! Get the rest of the header. The number

253 ! of bytes to capture in the correction

254 ! array will be placed in "Bytes'. Note

265 ! the use of "Digits" in the IMAGE string.
260 ENTER QHp8711 USING "%,"&VAL$(Digits)&"D"; Bytes
261

262 ! Determine the number of points from the

263 ! number of bytes (6 bytes per point).

270 Points=Bytes/6

271 !

272 ! This example was set up in line 30 above
273 ! for 801 points. Edit this line and line 30
274 ! to allow other dimensions.

280 IF Points<>801 THEN

290 DISP '"Arrays are not dimensioned for this calibration"
300 STOP

310 END IF

320 DISP "Uploading (querying) calibration arrays"
321 '

322 ! Turn off ASCII formatting on the I/O path.
330 ASSIGN QHp8711;FORMAT OFF

331 !

332 ! Get the first error correction array.

340 ENTER QHp8711;Corri(x)

341 !

342 ! Turn on ASCII formatting.

350 ASSIGN Q@Hp8711;FORMAT ON

351 !

352 ! Get the "end of data" character.

360 ENTER QHp8711;A$

361 !

362 ! For the reflection there are two more

363 ! arrays to read.

370 IF Arrays=3 THEN

8-42

371
372
373
380
390
391
392
393
400
410
420
430
440
450
451
452
453
460
461
462
463
464
470
471
472
473
474
480
481
482
490
491
492
493
494
500
501
502
510
511
512

Example Programs
Celibration

! Request and read in the second
! correction array.

OUTPUT QHp8711;"TRAC? CH1SCORR2"
Read_array(O@Hp8711,Corr2(*))

!

! Request and read in the third
! correction array.
OUTPUT @Hp8711;"TRAC? CH1iSCORR3"
Read_array(QHp8711,Corr3(*))
END IF
DISP "Calibration arrays have been uploaded."
WAIT 5
DISP "Downloading (setting) calibration arrays"
\
! Turn off correction before writing a
! calibration back into the analyzer.
OUTPUT @Hp8711;"SENS1:CORR:STAT OFF"
1

! Set the number of points for the correction
! arrays. (Not necessary in this example,

! but shown for emphasis.)

OUTPUT QHp8711;"SENS1:SWE:POIN";Points

)

! Prepare the analyzer to receive the first
! correction array in the indefinite block
! length format. '

OUTPUT QHp8711;"TRAC CH1SCORR1, #0";

|}

! Turn off ASCII formatting.
ASSIGN Q@Hp8711;FORMAT OFF
[}

! Send the first correction array to the
! analyzer. The array transfer is

! terminated with the "END" signal.
QUTPUT QHp8711;Corri(x) ,END

!

! Turn on ASCII formatting.
ASSIGN QHp8711;FORMAT ON
1

! For a reflection array download, there

8-43

LAULIIMIS

Calibration

513
520
521
522
523
530
540
541
542
543
550
560
570
571
572
580
590
600
601
602
603
604
605
606
610
620
630
640
650
660
670
680
690
700
710
711
713
714
715
716
717

Liuyialig

are two more arrays.

IF Arrays=3 THEN
1

! Prepare the analyzer to receive the
! 2nd array, then output it.

OUTPUT @Hp8711;"TRAC CH1SCORR2, ";
Write_array(Q@Hp8711,Corr2(*))

]

! Prepare the analyzer to receive the
! 3rd array, then output it.

OUTPUT QHp8711;“TRAC CHIiSCORR3, “;
Write_array(@Hp8711,Corr3(x))

END IF
!

Turn on the calibration just downloaded.

OUTPUT @Hp8711;"SENS1:CORR:STAT ON;*WAI"
DISP "Calibration arrays have been downloaded."
END

Subprogram for reading binary data array from
the analyzer. The command requesting a specific
data array has already been sent prior to
calling this subprogram.

SUB Read_array(@Hp8711,INTEGER Array(*))

DIM A$([10]

INTEGER Digits,Bytes

ASSIGN @Hp8711;FORMAT ON

ENTER @Hp8711 USING "% ,A,D";A$,Digits

ENTER Q@Hp8711 USING "% ,"&VAL$(Digits)&"D";Bytes
ASSIGN QHp8711;FORMAT OFF

ENTER QHp8711;Array(*)

ASSIGN @Hp8711;FORMAT ON

ENTER QHp8711;A$

SUBEND

Subprogram for writing binary data array to

the analyzer. The command requesting a specific
data array has already been sent prior to
calling this subprogram.

8-44

720
730
740
750
760
770

Example Programs
Calibration

SUB Write_array(Q@Hp8711,INTEGER Array(*))
QUTPUT QHp8711;"#0";
ASSIGN Q@Hp8711;FORMAT OFF
OUTPUT @Hp8711;Array(*),END
ASSIGN OHp8711;FORMAT ON
SUBEND

8-45

LAWIIIIG IUHIUIIIO

Calihration

CALKIT Example Program

This instrument state file demonstrates the type of file required to download
user-defined calibration kits. To see an example of using this feature, refer to
“Writing or Editing Your Own Cal Kit File”, in Chapter 6 of the User’s Guide.

10 '$ Standard Definitions for HP 85054B Precision
Type-N Cal Kit.

11 !

12 '$ This is a Cal Kit definition file, which

13 '$ uses the same format as a BASIC program.

14 '$ Lines that contain "!$" are comments.

15 !¢

16 '$ Put your Cal Kit file on a disk, and use the

17 '$ analyzer’s [SAVE/RECALL] [Recall State] keys

18 '$ to load your custom Cal Kit into the analyzer.

20 ! _

30 !$ Definitions for 50 Ohm jack (FEMALE center
contact) test

40 !'$ ports, plug (MALE center contact) standards.

50 !

60 ! OPEN: § HP 85054-60027 Open Circuit Plug
70 ! Z0 50.0 $ Ohms

80 ! DELAY 57.993E-12 $ Sec

S0 ! LOSS 0.8E+9 $ Ohms/Sec

100 ! CO 88.308E-15 §$ Farads

110 ! Ci1 1667.2E-27 $§ Farads/Hz

120 ! C2 -146.61E-36 $ Farads/Hz"2

130 ! C3 9.7531E-45 § Farads/Hz"3

140 !

150 ! SHORT: ¢ HP 85054-60025 Short Circuit Plug
160 ! Z0 50.0 $ Ohms

170 ! DELAY 63.078E-12 $ Sec

180 ! LOSS 8.E+8 $§ Ohms/Sec

190 !

200 ! LOAD: § HP 00909-60011 Broadband Load Plug
210 ! Z0 50.0 $ Ohms

220 ! DELAY 0.0 $ Sec

230 ! LOSS 0.0 $ Ohms/Sec

240
250
260
270
280
290
300

!
! THRU:

]

! DELAY
! LOSS

!

END

196.0E-12 $ Sec
2.2E+9 $ Ohms/Sec

Example Programs
Calibration

$ HP 85054-60038 Plug to Plug Adapter
Z0 50.0 $ Ohms

O S KON A
o Y

R

”‘ "t

8-47

Instrument State and Save/Recall

LEARNSTR Using the learn string to upload and download instrument
states.

SAVERCL Saving and recalling instrument states, calibrations and data.
The example also demonstrates saving data in an ASCII file
that includes both magnitude and frequency information.

8-48

Example Programs
Instrument State and Save/Recall

LEARNSTR Example Program

This program demonstrates how to upload and download instrument states
using the learn string. The learn string is a fast and easy way to read an
instrument state. It is read out using the *LRN? query (an IEEE 488.2
cornmon commands). To restore the learn string simply output the string to
the analyzer.

The learn string contains a mnemonic at the beginning that tells the analyzer
to restore the instrument state.

The learn string is transferred as a block. The header is ASCII formatted and
the data is in the instrument’s internal binary format. The number of bytes
in the block of data is determined by the instrument state (no more than
20000 bytes).

"SYST:SET #<digits><bytes><learn string data>"

The “long” learnstring, in addition to the instrument state like the normal
{ learnstring, will include data and calibration arrays IF they are selected using
= the Define Save function under SAVE RECALL. The SCPI equivalent command
for saving the calibration arrays is added before the “long” learnstring query.

8-49

Example Programs
Inatrument State and Save/Racall

Lines 20-80 are explained in the introduction to the example programs
section. They determine which system controller is being used and prepare
the instrument for remote operation.

{Filename: LEARNSTR i
|

! Description:

! 1. Query the learn string

! 2. Preset the analyzer

! 3. Send the learn string,

! restoring the previous state.

O~ O b WN -

{
10 DIM Learnstr$[20000] .
20 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

30 ASSIGN Q@Hp8711 TO 800

40 ELSE

50 ASSIGN @Hp8711 TO 716

60 ABORT 7

70 CLEAR 716

80 END IF

81 !

82 ! Request the learnstring. If the "long"

83 ! learnstring is desired, comment the line

84 ! below, and uncomment the line after it.

85 ! The '"long" learnstring, in addition to

86 ! the instrument state like the normal

87 ! learnstring, will include data and

88 ! calibration arrays IF they are selected

89 ! using the Define Save function under

30 ! SAVE RECALL. The SCPI equivalent command

921 ! for saving the calibration arrays is

92 ! added before the '"long" learnstring query.

94 OUTPUT @Hp8711;"*LRN?"

95 ! OUTPUT @Hp8711;"MMEM:STOR:STAT:CORR ON;
:SYST:SET:LRNL?"

96 !

97 ! Read the learnstring from the analyzer.

98 ! The USING "-K" format allows the data

99 ! being transmitted to include characters

100 ! (such as the line feed character) that

101 ! would otherwise terminate the learnstring

8-50

102
103
110
120
121
122
130
131
132
140
150
160
161
162
163
164
1656
170
180
190

Example Programs
Instrument State and Save/Racall

! request prematurely.

ENTER QHp8711 USING "-K";Learnstr$
DISP "Learn string has been read"
WAIT §

1

! Preset the analyzer.

QUTPUT @Hp8711;"SYST:PRES;*0PC?"

]

! Wait for the preset operation to complete.
ENTER QHp8711;0pc

DISP "Instrument has been PRESET"

WAIT 5

1

! Output the learnstring to the analyzer.
! The mnemonic is included in the string,
! s0 no command preceding "Learnstr$" is
! necessary.

OUTPUT €Hp8711;Learnstr$

DISP "Instrument state has been restored"
END

8-51

Example Programs
Instrument State and Save/Recall

10
20
30
40
50
60
70
71
72

SAVERCIL Example Program

This program demonstrates how to save instrument states, calibrations

and data to a mass storage device. The device used in this example is the
analyzer’s internal 3.5” disk drive. The only change needed to use this
program with the internal non-volatile memory is to change the mass storage
unit specifier.

The four choices are the internal floppy disk drive (INT:), the internal
non-volatile memory, (MEM:), the internal volatile memory, (RAM:), and

an external HP-IB floppy disk drive (EXT:). To perform a save/recall to an
external disk drive requires passing control of the HP-IB from the controller
to the analyzer. For more information on passing control of the bus refer to
Chapter 3, “Passing Control,” or the PASSCTRL example program.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 80-130 are an example of saving an instrument state and calibration on
the internal floppy disk drive.

Lines 190-200 are an example of recalling that instrument state and
calibration.

Lines 210-230 are an example of saving a data trace (magnitude and
frequency values) to an ASCII formatted file on the internal floppy disk drive.
This file cannot be recalled into the instrument. It can, however, be imported
directly into spreadsheets and word processors.

!Filename: SAVERCL

!
IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

ASSIGN @Hp8711 TO 800
ELSE
ASSIGN QHp8711 TO 716
ABORT 7
CLEAR 716
END IF

|
! Select the internal floppy disk drive

8-52

73

80

81

82

83

84

90

91

92

93

94

100
101
102
103
104
110
111
112
113
114
115
120
130
140
141
142
143
150
160
170
180
181
182
183
184
185
190
200
201
202

Example Programs
Instrumeant State and Sava/Resall

! as the mass storage device.
OUTPUT QHp8711;"MMEM:MSIS ’INT:’"
!

! Turn on the saving of the instrument state
! as part of the "Define Save" function under
! SAVE RECALL.

OUTPUT QHp8711;"MMEM:STOR:STAT:IST ON"

1 -
! Turn on the saving of the calibration

! as part of the "Define Save" function under
! SAVE RECALL.

OUTPUT QHp8711;"MMEM:STOR:STAT:CORR ON"

!

! Turn off the saving of the data

! as part of the "Define Save" function under

! SAVE RECALL.

OUTPUT @Hp8711;"MMEM:STOR:STAT:TRAC OFF"

1

! Save the current defined state (STAT 1) into

! a file named "FILTER". Use *0PC? to make

! sure the operation is completed before any

! other operation begins.

OUTPUT Q@Hp8711;"MMEM:STOR:STAT 1,’FILTER’;*QPC?"
ENTER @Hp8711;0pc

DISP "Instrument state and calibration have been saved"
!

! Preset the instrument so that the change in state

! is easy to see when it is recalled.

OUTPUT @Hp8711;"SYST:PRES;*0PC?"

ENTER @Hp8711;0pc

DISP "Instrument has been PRESET"

WAIT 5

!

! Recall the file "FILTER" from the internal

! floppy disk drive. This becomes the new instrument
! state. Use of the *0PC query allows hold off of

! further commands until the analyzer is reconfigured.
OUTPUT @Hp8711;"MMEM:LOAD:STAT 1,’INT:FILTER’;*0PC?"
ENTER @Hp8711;0pc

1

! Take a single sweep to ensure that valid measurement

8-53

[

AL HPIC nuunuuu

Instrument State and Save/Recall

203
210
220
221
222
223
230
240
250

! data is acquired.

OUTPUT @Hp8711;"ABOR;:INIT:CONT OFF;:INIT;*WAI"

DISP "Instrument state and calibration have been recalled"
|

! Save that measurement data into an ASCII file

! called "DATAOOO01" on the internal floppy disk drive.
OUTPUT QHp8711;"MMEM:STOR:TRAC CH1FDATA,’INT:DATA0001°"
DISP "Data has been saved (ASCII format)"

END

8-54

Hardcopy Control

PRINTPLT Using the serial and parallel ports for hardcopy output. The

example also demonstrates plotting test results to an HPGL
file.

PASSCTRL Using pass control and the HP-IB for hardcopy output. The
example uses an HP-IB printer.

FAST_PRT Provides fast graph dumps to PCL5 printers.

8-55

LAQIIIPIE 1 IUyIaiiliy

Hardeopy Control

PRINTPLT Example Program

This program demonstrates how to send a hardcopy to a printer on the serial
interface. This is done by selecting the appropriate device, setting up the
baud rate and hardware handshaking, and sending the command to print or
plot. The *0PC? query is used in this example 1o indicate when the printout
is complete, Another method of obtaining the same results is to monitor the
Hardcopy in Progress bit (bit 9 in the Operational Status Register). More
information on printing or plotting is available in the User’s Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 80-150 demonstrate sending a hardcopy output to a printer connected
to the serial port. The same program could be used to send hardcopy output
to a device on the parallel port. The only changes would be deleting lines
100-110 and changing line 90 to read HCOP : DEV : PORT PAR.

Lines 160-260 demonstrate how to create an HPGL file (plotter language) and
send it to the disk in the internal 3.5 disk drive. HPGL files are supported
by many applications including the leading word processors and desktop
publishing products.

1 !Filename: PRINTPLT

2 !

3 ! Description:

4 ! 1. Select serial port. Configure it.

5 ! 2. Dump table of trace values

6 ! 3. Re-configure hardcopy items to dump
7 ! 4. Dump HP-GL file to internal floppy

8 !

10 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
20 ASSIGN @Hp8711 TO 800

30 ELSE

40 ASSIGN QHp8711 TO 716

50 ABORT 7

60 CLEAR 716

70 END IF

71 !

72 ! Select the output language (PCL-Printer

73

74

80

81

82

90

91

92

100
101
102
103
104
110
111
112
113
114
120
130
140
141
142
143
144
150
161
152
160
161
162
170
171
172
173
180
181
182
190
191
192

Example Programs
Hardcopy Control

! Control Language) and the hardcopy port

! to serial.

OUTPUT QHp8711;"HCOP:DEV:LANG PCL;PORT SER"
]

! Select baud rate to 19200.
OUTPUT QHp8711;"SYST:COMM:SER:TRAN:BAUD 19200"
]

! Select the handshaking protocol to Xon/Xoff.
OUTPUT QHp8711;"SYST:COMM:SER:TRAN:HAND XON"
[}

! Select the type of output to table, which
! is the same as the softkey List Trace

! Values under the Define Hardcopy menu.
OUTPUT @Hp8711;"HCOP:DEV:MODE TABL"

!

! Send the command to start a hardcopy, and

! use *0PC query to make sure the hardcopy is
! complete before continuing.

QUTPUT Q@Hp8711;"HCOP;*0PC?"

ENTER QHp8711;0pc

DISP "Hardcopy to serial printer - COMPLETE!"
!

! Select the HPGL language and the hardcopy

! port to be the currently selected mass memory
! device.

OUTPUT Q@Hp8711;"HCOP:DEV:LANG HPGL;PORT MMEM"
. .

! Include trace data in the plot.
OUTPUT @Hp8711;'"HCOP:ITEM:TRAC:STAT ON"
[}

! Turn graticule off in the hardcopy dump.
OUTPUT Q@Hp8711;"HCOP:ITEM:GRAT:STAT OFF"
|

! Include frequency and measurement
! annotation.

OUTPUT @Hp8711;"“HCOP:ITEM:ANN:STAT ON"
]

! Include marker symbols.
OUTPUT QHp8711;"HCOP:ITEM:MARK:STAT ON"
!

! Include title (and/or time/date if

8-57

Example Programs
Hardespy Control

193
200
201
202
203
210
211
212
213
220
230
240
250

! already selected).
OUTPUT QHp8711;"HCOP:ITEM:TITL:STAT ON"
|

! Define the hardcopy to be both the graph
! and a marker table.

OUTPUT Q@Hp8711;"HCOP:DEV:MODE GMAR"

]

! Send the command to plot and use *0PC
! query to wait for finish.

OUTPUT QHp8711;"HCOP;*0PC?"

ENTER QHp8711;0pc

DISP "Plot to floppy disk - COMPLETE!"

END -

8-568

Example Programs
Hardcopy Control

PASSCTRL Example Program

This program demonstrates how to send a hardcopy to an HP-IB printer.

This is done by passing active control of the bus to the analyzer so it can
control the printer. More information about passing control to the analyzer is
available in Chapter 3, “Passing Control.”

Lines 10-90 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

1 !Filename: PASSCTRL

2 !

3 ! Description:

4 ! External controller runs this program, which
5 ! instructs the analyzer to perform a hardcopy
6 ! and then passes control to the analyzer.

7 ! Analyzer performs hardcopy over HP-IB

8 ! to printer at 701, then passes control back.
9 !

10 ! This program only works on controllers which
11 ! implement pass control properly. HP s700

12 ! computers running BASIC-UX 7.0x will need

13 ! to upgrade to a newer BASIC-UX version.

14 !

15 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

20 ASSIGN @Hp8711 TO 800

30 Internal=1

40 ELSE

50 ASSIGN Q@Hp8711 TO 716

60 Internal=0

70 ABORT 7

80 CLEAR 716

90 END IF

91 !

92 ! Select the language to PCL (Printer

93 ! Control Language) and the output port

94 ! to HP-IB.

100 OUTPUT QHp8711;"HCOP:DEV:LANG PCL;PORT GPIB"

101 !

8-59

LAULHMIC) IUBIOHIO

Hardeopy Control

102
103
110
111
112
120
121
122
130
131
132
140
150
151
152
160
161
162
163
170
171
172
173
180
181
182
183
190
200
201
202
210
211
212
213
220
230
231
233
234
240

! Select the HP-IB address for the hardcopy
! device on the HP-IB.

OUTPUT ©Hp8711;"SYST:COMM:GPIB:HCOP:ADDR 1"
[}

! Set the output to graph only.
QUTPUT @Hp8711;"HCOP:DEV:MODE GRAP"
i

! If the internal controller is being used...
IF Internal=1 THEN
|
! then make it System Controller of HP-IB
OUTPUT @Hp8711;"SYST:COMM:GPIB:CONT ON"
END IF
; ‘
! Clear Status Registers
OUTPUT @Hp8711;"*CLS"
I

! Enable the Request Control bit in the Event

! Status Register. ~
OUTPUT QHp8711;"*ESE 2"
t

! Clear the Service Request enable register;
! SRQ is not being used.

OUTPUT Q@Hp8711;"*SRE O"

1

! Send the hardcopy command to start the
! print.
OUTPUT @Hp8711;"HCOP"
LOOP
'
! Read the status byte using Serial Poll.
Stat=SPOLL(@Hp8711)
[}
! Exit when the analyzer requests active control
! of HP-IB from the system controller.
EXIT IF BIT(Stat,5)=1 “,
END LOOP ‘
1
! Now system controller passes control to
! the analyzer. :
PASS CONTROL @Hp8711 e

8-60

Example Programs

Hardoepy Control
250 DISP "Hardcopy in Progress...";
260 IF Internal=1 THEN
' 261 ! If using the internal IBASIC controller,
&m, 262 ! then use the *0PC query method to wait
263 ! for hardcopy completion.
270 OUTPUT ©@Hp8711;"*0PC?"
280 ENTER @Hp8711;0pc
290 ELSE -
291 ! If external computer control, then...
300 LOOP
301 !
303 Monitor the HP-IB status in the

|

304 ! external computer’s HP-IB status
|
1

305 register. Here, the HP-IB interface
306 code 7 register 6 status is requested
307 ! and put into "Hpib".
308 DISk ".";
309 WAIT 1 ! No need to poll rapidly
310 STATUS 7,6;Hpib

\ 311 !

~ 312 ! When active control is returned to the
313 ! gsystem controller (bit 6 set), then exit.
314 ! (This fails on s700s8 running BASIC 7.0x)
320 EXIT IF BIT(Hpib,6)=1
330 END LOOP
340 END IF
350 DISP "HARDCOPY COMPLETE!"
360 END

8-61

Laainpie i Ugld“lb

Herdeopy Control

FAST_PRT Example Program

This program configures a PCL5 printer to accept HP-GL graphics commands
from the analyzer. The program executes a hardcopy which causes the
analyzer to send HP-GL commands to the parallel port PCL5 printer. Provides
up to 10x speed improvement of some hardcopies.

10
20
30
40
50
60
70

80
90
100

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

.
.
.
.
.

FAST_PRT

This program is designed to set up a PCLS5 printer
connected to the parallel port of the analyzer to
accept HP-GL syntax. HP-GL gives fast graph dumps.

Connect your PCL5 printer to the parallel
printer of the
analyzer, then run the program.

Once the parallel printer has been configured
to accept

! HPGL commands, a hardcopy 1s done, the printer is
! reset to normal mode, and the page is ejected.

‘DIM A$[50]

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

H
H

ASSIGN QRfna TO 800
Internal=1
Isc=8

ELSE

ASSIGN Q@Rfna TO 716
Internal=0

Isc=7

ABORT 7

CLEAR 716

END IF

Define the hardcopy device

OUTPUT ORfna;"HCOP:DEV:LANG HPGL;PORT CENT"

8-62

Example Programs
Hardeopy Control

310 ! Define PCL5 escape codes needed to set up
HPGL commands:
320 DATA QE
kh,- 330 DATA Q&12A
340 DATA Q2aOL0Q&a4000MO&10E
350 DATA Q@*c7400x5650y

360 !'DATA Q@*c5500x5650y
370 !DATA ©@*c4255x3283y

Reset, Eject page
Page size 8.5 x 11
No margins
10.28 x 7.85 size 720/in
if Marker table included
portrait,remove
Landscape Mode
! Landscape Mode
! Cursor to anchor point
400 DATA ©@*cOT ! Set picture anchor point
410 DATA ©*r-3U ! CMY Palette
420 !DATA @*riU ! Monochrome optional

|

|

1

1

I

380 DATA 0&110
390 DATA Q*p50x50y

430 DATA @%1iB ! HPGL Mode

440 DATA $! dump plot

450 DATA @%0A ! Exit HPGL Mode
460 DATA CE ! Eject page

470 DATA DONE ! End of defined escape codes

' 480 !
N 490 ! Send the defined escape codes to the printer
500 LOOP
510 READ A$
520 EXIT IF A$="DONE"
530 FOR I=1 TO LEN(A$)
540 SELECT A$[I;1]
550 CASE "@" ! Escape Character
560 OUTPUT ORfna;"DIAG:PORT:WRITE 15,0,27"
570 CASE "$" ! Dump the plot
580 OUTPUT @Rfna; "HCOP;*WAI"
590 CASE ELSE! Send Character
600 OUTPUT ©@Rfna;'DIAG:PORT:WRITE 15,0,
";NUM(A$(I;1])
610 END SELECT
620 NEXT I
630 END LOOP
640 !
650 END

8-63

Service Request

SRQ Generating a service request interrupt. The example uses
the status reporting structure to generate an interrupt as
soon as averaging is complete.

8-64

Exampie Programs
Servics Regquest

SRQ Example Program

This program demonstrates generating a service request interrupt. The SRQ
is used to indicate when averaging is corapiete. More information on service
requests and the status registers is available in Chapter 5, “Using the Status
Registers.”

In this program, the STATus :PRESet executed in line 130 has the effect of
setting all bits in the averaging status transition registers (positive transitions
to 0, negative transitions to 1). It also sets up the operational status
transition registers (positive transitions to 1, negative transitions to 0). Thes
are the states needed to generate an interrupt when averaging is complete.

Lines 10-90 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

i 'Filename: SR

2 !

3 ! Description:

4 ! Set an SRQ to occur when averaging is complete.
5 ! Turn on averaging, and set to 8 averages.

6 ! Initiate sweeps. SRQ will occur after 8 sweeps.
7 ! Wait in a do-nothing loop, checking SRQ flag.
8 ! Display message after SRQ flag is set.

9 !

10 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

20 ASSIGN @Hp8711 TO 800

30 Isc=8

40 ELSE

50 ASSIGN @Hp8711 TO 716

60 Isc=7

70 ABORT 7

80 CLEAR 716

20 END IF

91 !

92 ! Clear status registers.

100 OUTPUT @Hp8711;"*CLS"

101 !

102 ! Clear the Service Request Enable register.

8-6¢

LAQiIIE [IUYlailid

Service Request

110
111
112
120
121
122
130
131
132
133
134
140
141
142
143
144
145
146
147
148
149
150
152
163
154
186
160
161
162
163
164
170
171
172
180
181
182
190
191
192
200

OUTPUT @Hp8711;'"*SRE O"
]

! Clear the Standard Event Status Enable register.
OQUTPUT Q@Hp8711;"*ESE 0" -
I

! Preset the remaining status registers.

OUTPUT @Hp8711;'STAT:PRES"

{

! Set operation status register to report

! to the status byte on POSITIVE transition of

! the averaging bit.

OUTPUT @Hp8711;"STAT:0PER:ENAB 256"

]

! Set averaging status register to report to

! operational status register on NEGATIVE transition
! of the averaging done bits. The NEGATIVE

! transition needs to be detected because the

! averaging bit O is set to 1 while the analyzer
! is sweeping on channel 1 and the number of

! sweeps completed since averaging restart is

! less than the averaging factor. When the bit

! goes back to O, the averaging is done.

OUTPUT Q@Hp8711;"STAT:0PER:AVER:ENAB 1"

[}

! Enable the operational status bit in the status
! byte to generate an SRQ.

OUTPUT @Hp8711;"*SRE 128"

I

! On an interrupt from HP-IB "Isc" (Interface

! Select Code) SRQ bit (2), branch to the interrupt
! service routine "Srq_handler".

ON INTR Isc,2 GOSUB Srq_handler

1

! Now enable the interrupt on SRQ (Service Request).
ENABLE INTR Isc;2

]

! Set averaging factor to 8.

OUTPUT QHp8711;"SENS1:AVER:COUN 8;*WAI"

}

! Turn on averaging and restart.

OUTPUT @Hp8711;"SENS1:AVER ON;AVER:CLE;*WAI"

8-66

Example Programs
Ssrvics Raguest

201 !
202 ! Turn on continuous sweep trigger mode.
210 OUTPUT @Hp8711;"ABOR;:INIT1:CONT ON;*WAI"
k 211 !
212 Initialize flag indicating when averaging done

214 interrupt is detected, and the interrupt
216 service routine acknowledges the

217 ! interrupt and sets the flag to 1.

220 Avg_done=0

225 DISP "Waiting for SRQ on averaging complete.";

]

213 ! to 0. Then loop continuously until the
l
]

230 L.O0P
240 DISpP ".";
245 WAIT 0.1 ! Slow down dots

250 EXIT IF Avg_done=1
260 END LOOP

261 !
262 ! Display desired completion message.
265 DISP
\ 270 DISP "Got SRQ. Averaging Complete!"
e 280 STOP
290 !
300 Srq_handler: ! Interrupt Service Routine
301 !
302 ! Determine that the analyzer was actually
303 ! the instrument that generated the
304 ! interrupt. '
310 Stb=SPOLL(®Hp8711)
311 !
312 ! Determine if the operation status register
313 ! caused the interrupt by looking at bit 7
314 ! of the result of the serial poll.
320 IF BINAND(Stb,128)<>0 THEN
321 !
322 ! Read the operational status event register.
330 OUTPUT Q@Hp8711;"STAT:0PER:EVEN?"
340 ENTER QHp8711;0p_event
341 !
342 ! Determine if the averaging status register
343 ! bit 8 is set.
350 IF BINAND(Op_event,256)<>0 THEN

8-67

LAGHIPIG T iuyialin

Servics Request

351 !

362 ! If so, then set flag indicating
353 ! averaging done.

360 Avg_done=1

370 END IF

380 END IF

390 RETURN

400 END

8-68

File Transfer Over HP-IB

Two example programs demonstrate how to transfer files from the analyzer’s
mass memory to and from mass memory of an external controller via HP-IB.
Instrument states and program files may be transferred to or from the
analyzers internal non-volatile memory, (MEM:), internal-volatile memory,
(RAM:), and the internal 3.5” floppy disk, (INT:). '

This can be a convenient method to archive data and programs to a central
large mass storage hard drive.

To run these programs, connect an external controller to the analyzer with ar
HP-IB cable.

GETFILE Transfers a file from the analyzer to an external controller.

PUTFILE Transfers a file from an external controiler to the analyzer.

8-69

Example Programs
File Transfer Over HP-1B

GETFILE Example Program

Files are transferred from the analyzer to an external RMB controller. Run
this program on your external RMB controller. The program will prompt you
to specify which analyzer program to transfer, the mass storage unit (MEM:),
internal non-volatile memory, (RAM:), internal volatile memory, or (INT:),
internal 3.5” floppy disk drive and the name of the file to be created on your
external controller mass storage. Transfers instrument state files or program

files.
10 IGETFILE
20 !
30 ! This program will get files from 871X specified
mass storage to a host
40 ! mass storage. The user specifies the mass storage unit,
the filename
50 ! of the 871X and the file on the host controller
to be created.
60 !
110 ¢
120 DIM B1lk$(1:4)[32000]
! Max file size = 4 * 32000 = 128000 bytes
130 !
140 DIM Filename$[15] ,Mass$[15] ,Dest$[15]
150 INTEGER Wordil
160 ASSIGN QHp8712 TO 716
170 CLEAR QHp8712
180 BEEP
190 Mass$="INT"
200 Dest$="File871X"
210 INPUT "Enter the name of the 871X file to get.'",Filename$
220 INPUT "Enter 871X Mass Storage (mem,INT,ram)",Mass$
260 INPUT "Enter host filename (default=’File871X’)",Dest$
270 DISP "READING FILE "&Mass$&":"&Filename$g" ..."
280 OUTPUT QHp8712;"MMEM:TRANSFER? ’"&Mass$&":"&Filename$g"’"
290 ENTER QHp8712 USING "#,W";Wordl
300 ENTER QHp8712 USING "%,-K";Blk$(*)
310 FOR I=1 TO 4
320 Filelength=LEN(B1k$(I))+Filelength

8-70

Example Programs

File Transfer Cvar HP-1B
B 330 NEXT I
340 BEEP
350 PRINT "Length",Filelength
k\, 360 DISP “Creating new file..."
370 ON ERROR GOTO Save_file
380 PURGE Dest$
390 Save_file: !
400 OFF ERROR
410 CREATE Dest$,Filelength
420 ASSIGN @File TO Dest$;FORMAT ON
430 OUTPUT QFile;Blk$(*);
440 ASSIGN QFile TO =*
450 DISP "File '"&Dest$&" created."
460 BEEP
470 END
\ N
8-7

Example Programs
File Transfer Over HP-1B

PUTFILE Example Program

PUTFILE - Files are transferred from the RMB mass storage to the analyzer.
Run this program on your external RMB controiler. The program will prompt
you to specify the file to transfer and where to transfer the file. BDATA or
ASCI files may be transfered to the analyzer's internal non-volatile memory,
(MEM:), the internal volatile memory, (RAM:), or the internal built in 3.5”
floppy disk, (INT:).

10 ! PUTFILE

20 !

30 ! This program will transfer files from RMB mass mem to the
specified

40 ! 871X mass storage. The user specifies the 871X mass
storage unit,

50 ! the 871X file to be created, file type, and file to be
transferred.

60 !

110 !

120 DIM A$(1:4)[32000]

130 DIM Filename$[15] ,Mass$[15],Source$[15]

140 INTEGER Wordi

150 Bdat$='n"

160 ASSIGN QHp8712 TO 716

170 CLEAR QHp8712

180 BEEP

190 Mass$="INT"

200 INPUT "Enter the name of the 871X file to create'",Filename$
210 INPUT "File type BDAT? (y,n) [n]",Bdat$

220 INPUT "Enter the 871X Mass Storage {(mem,INT,ram)",Mass$
260 INPUT "Enter source filename' ,6Source$

270 DISP "READING FILE "&Source$&" ..."

280 ASSIGN @File TO Source$;FORMAT OFF

290 ENTER QFile USING "%,-K";A$(x)

300 ASSIGN @File TO =*

310 !'PRINT A$

320 BEEP

330 Length=0

340 FOR I=1 TO 4

8-72

- 350
360

370

_ 380
390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

\ 540
= 550
560

570

580

590

600

610
620

Example Programs

File Transfer Over HP-1B

Length=LEN(A$(I))+Length
NEXT I
DISP "TRANSFERRING FILE = ",Length
IF Bdat$="y" OR Bdat$="Y" THEN
IF Length<10 THEN
Blk$="1"&VAL$(Length)
ELSE
IF Length<100 THEN
Blk$="2"gVAL$ (Length)
ELSE
IF Length<1000 THEN
Blk$="3"&VAL$ (Length)
ELSE
IF Length<10000 THEN
Blk$="4"&VAL$ (Length)
ELSE
IF Length<100000 THEN
Blk$="5"&VAL$(Length)
ELSE
Blk$="6"&VAL$(Length)
END IF
END IF
END IF
END IF
END IF
OUTPUT QHp8712;"MMEM: TRANSFER:BDAT ’"&Mass$i"
:"g¢Filename$&"’ ,#"&B1k$;
ELSE :
OUTPUT ©Hp8712;"MMEM:TRANSFER

'"gMass$&" : "¢Filename$l" ’ , #0";

630
640
650
660
670

END IF
OUTPUT QHp8712;A$(*) ;END

DISP "871X file '"&Mass$&":"&Filename$&" created."

BEEP
END

8-73

~ Customized Display

GRAPHICS

Using graphics and softkeys to create custorized procedures.

The example demonstrates the use of some of the user
graphics commands including the one to erase a previously
drawn line. It also demonstrates use of the softkeys and
detecting a front panel keypress with the service request
interrupt process.

8-74

Example Programs
Customized Display

GRAPHICS Example Program

This program demonstrates how to use the analyzer’s user graphics
commands to draw setup diagrams. It also demonstrates generating a service
request in response to a keyboard interrupt. More information on user
graphics commands is available in Chapter 7, “Using Graphics,” and in
Chapter 12, “SCPI Command Surmnmary”. Information on generating a service
request and using the status reporting structure is in Chapter 5, “Using the
Status Registers.”

Note that this program uses the analyzer’s user graphics commands. If
the IBASIC option is installed, graphics may sometimes be more easily
implemented using BASIC commands such as POLYGON and RECTANGLE.
For further information, see the “BARCODE” program description in the
HP Instrument BASIC Users Handbook.

Lines 10-110 are explained in the introduction to the example programs
section. They determine which systerm controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 170-240 draw and label a representation of an HP 8711 for a
connection diagram. This example is a simple front view from the top.

Lines 250-450 draw the connection needed for a normalization. The
operator is prompted to make this connection and to press a softkey on the
instrument. A flashing message is used to attract attention.

NOTE

This program works properly onfy when option 1C2, IBASIC, has been installed. Refer to program
GRAPHZ if your analyzer does not have the IBASIC option installed.

8-75

Example Programs
Customized Display

Progran
Running
RF ouT AF IN

HP 8711 = = NORMAL 1 ZE
L

Cannect THRU between RF OUT and RF IN

>>>>> Press NORMALIZE <<<<<

PChan 2:Transmission Log‘ Ma 10.0 dB/ Ref 0.00 dB

.

PAUSE

I
—~

Start 150.000 M-z) Stop 250.000 MHz

GRAPHICS example connection diagram

Lines 460-580 perform the normalization, erase the prompts (without erasing
the whole screen) and prepare for the test.

Lines 590-730 are a branching routine that handles the service request
generated interrupts used by the external controller.

Filename: GRAPHICS

Description: Draws a simple connection diagram
in the IBASIC window, and displays a softkey.

NOTE: This program works properly ONLY
when option 1C2, IBASIC, has been installed.
Refer to program GRAPH2 if no IBASIC option.

WO~~~ Obd WN -

8-76

10

20

30

40

50

60

70

80

90

100
110
111
112
113
120
121
122
130
131
132
133
134
140
141
142
143
150
160
161
162
170
171
172
173
174
175
180

181
182
190

Example Programs
Customized Display

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
Internal=1
Isc=8
ELSE
ASSIGN QHp8711 TO 716
Internal=0
Isc=7 .
ABORT 7
CLEAR 716
END IF
|
! Allocate an IBASIC display partition
! to show the graphics.
QUTPUT @Hp8711;"DISP:PROG UPP"
|

! Clear the IBASIC display partitiom.
OUTPUT ©QHp8711;"DISP:WIND10:GRAP:CLE"
1

! Turn on channel 2 for measurements. The
! lower part of the display is

! devoted to display of measurements.
OUTPUT Q@Hp8711;"SENS2:STAT ON;*WAI"

t

| Take a single controlled sweep to ensure

! a valid measurement using *0PC query.

OUTPUT @Hp8711;"ABOR; :INIT2:CONT OFF; :INIT2;*0PC?"
ENTER QHp8711;0pc

!

! Select the bright "pen" and bold font.

OUTPUT QHp8711;"DISP:WIND10:GRAP:COL 1;LAB:FONT BOLD"
]

! Draw a label reading "HP 8711B" at 45 pixels
! to the right and 120 pixels above the origin.
! The origin is the lower left corner of the

! current graphics window (upper half).

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 45,120
;LAB 'HP 8711B’"

[l

! Draw a box to represent the analyzer.

OUTPUT QHp8711;"DISP:WIND10:GRAP:MOVE 30,175

8-77

LAUIIIPIG | 1uyIal

Customized Display

191
192
200

201
210

211
212
220
221
222
230

231
232
240

241

;DRAW 30,140;DRAW 480,140;DRAW 480,175"

I

! Draw a box to represent the REFLECTION RF OUT port.
OUTPUT QHp8711;"DISP:WIND10:GRAP:MOVE 275,140

;DRAW 275,130;DRAW 305,130;DRAW 305, 140"

! Draw a box to represent the TRANSMISSION RF IN port.
OUTPUT Q@Hp8711;"DISP:WIND10:GRAP:MOVE 410,140

;DRAW 410,130;DRAW 440,130;DRAW 440, 140"

! Change the text font to small, which is the

! same as that used for PRINT or DISP statements.
QUTPUT @Hp8711;"DISP:WIND1O:GRAP:LAB:FONT SMAL"

)

! Label the RF OUT port.

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 250, 145

;LAB °RF oUT’"

[}

! Label the RF IN port.

OUTPUT @Hp8711;"DISP:WIND10O:GRAP:MOVE 395,145

;LAB ’RF IN’"

250 Normalize: !

251
252
253
260

261
270

280
281
282
283
290
300
301
302
303
304
310
311

1
! Draw a through connection between the RF 0QUT
! and RF IN ports.
OUTPUT QHp8711;"DISP:WIND10:GRAP:MOVE 290,125
;DRAW 290,110;DRAW 425,110;DRAW 425,125"
! Prompt the operator to connect the through.
OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 1,50
;LAB ’Connect THRU between RF 0OUT and RF IN’"
IF Internal=1 THEN

! If using the IBASIC (internal) controller,

! then use the "ON KEY" method to handle

! user interface.

ON KEY 1 LABEL "NORMALIZE" RECOVER Norm
ELSE

! If using an external contreoller...

1

! Initialize flag for checking on keyboard

! interrupts.

Keycode=-1

1

312
320
321
322
323
330
331
332
333
334
335
336
337
338
340
341
342
343
350
351
352
353
360
370
380
381
382
390
391
392
393
394
395
396
400
410

420
430

440

Example Programs
Customized Display

! Label softkey 1.
OUTPUT @Hp8711;"DISP:MENU:KEY1 ’NORMALIZE’"
|

! Clear the status register and event status
! register.

OUTPUT QHp8711;"*CLS;*ESE 0"

|

! Preset the other status registers.

! Enable the Device Status register to report
! to the Status Byte on positive transition
! of bit O (key press). Enable the Status

! Byte to generate an interrupt when the

! Device Status register’s summary bit

! changes.

OUTPUT @Hp8711;"STAT:PRES;DEV:ENAB 1;*SRE 4"
|

! Clear the key queue to ensure that previous
! key presses do not generate an interrupt.
OUTPUT @Hp8711;"SYST:KEY:QUE:CLE"

|

! Set up and enable the interrupt on the HP-IB
! when a service request is received.

ON INTR Isc,5 RECOVER Srq

ENABLE INTR Isc;2

END IF

Turn off the graphics buffer.

OUTPUT @Hp8711;"DISP:WIND10:GRAP:BUFF OFF"

Loop for waiting for press of the NORMALIZE key.
The two different output statements along with
the wait statements create a blinking effect.
There is not exit from this loop other than

a keyboard interrupt.

Logp

QUTPUT QHp8711;"DISP:WIND10:GRAP:MOVE 55,18
;LAB ’>>>>> Press NORMALIZE <<<«<«’"

WAIT .2

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 55,18
;LAB ’ Press NORMALIZE ru

WAIT .2

8-79

LAGHIPIE | HUYiailid

Customized Display

450
451

END LOOP

460 Norm: ! Entry point to wait for a key press.

461
462
470
480
481
482
483
484
485
490
491
492
493
500

510

520
521
522
523
530
531
532
540
541
542
550
551
552
5563
560
561
562
563
570
571
572

]

! If wrong key pressed, return to Normalize.
IF Keycode<>0 THEN GOTO Normalize

OFF KEY

|

! The through should now be connected and

! ready to measure.
!
I

Turn the graphics buffer back on.
OUTPUT @Hp8711;"DISP:WIND10O:GRAP:BUFF ON"
, .

! Select the "“erase" pen (pen color 0) and

! erase the prompts.

OUTPUT QHp8711;"DISP:WIND10:GRAP:COL O;MOVE 55,18
;LAB ’>>>>> Press NORMALIZE <<<<<’"

OUTPUT QHp8711;"DISP:WIND10:GRAP:MOVE 1,50

;LAB ’'Connect THRU between RF OUT and RF IN’"
OUTPUT QHp8711;"DISP:MENU:KEY1 ’ e

[}

! Display the active data trace only. Turn off
! any previous normalization.

OUTPUT QHp8711;"CALC2:MATH (IMPL)"

L}

! Take a singls sweep on channel 2.

OQUTPUT QHp8711;"INIT2;*WAI"

1

! Copy the new data trace into the memory array.
OUTPUT @Hp8711;"TRAC CH2SMEM,CH2SDATA"

1

! Normalize; that is, display the active data

! relative to the memory trace.

OUTPUT @Hp8711;"CALC2:MATH (IMPL/CH2SMEM)"

'

! Display only one of the traces (the normalized
! trace).

OUTPUT @Hp8711;"DISP:WIND2:TRAC1 ON;TRAC2 OFF"

)

! Erase the through connect and select pen color 1 again.

8-80

580

590

_ 600

610

611
612
613
614
620
621
622
623
630
631
632
640
650
\ 651
652
660
661
670
680
690
700
701
702
703
710
720
730

Example Programs

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 290,110
;DRAW 425,110;DRAW 425,125;COL 1"
STOP

Srq: ! This is the branching routine that handles

service request
! generated interrupts.

|
! Do a serial poll to find out if analyzer generated the
! interrupt.
Stb=SPOLL(QHp8711)
[}
! Determine if the Device Status register’s summary
! bit (bit 2 of the Status Byte) has been set.
IF BINAND(Stb,4)<>0 THEN

{

! If so, then get the Device Status Register contents.

OUTPUT @Hp8711;"STAT:DEV:EVEN?"

ENTER Q@Hp8711;Dev_event

|

! Check for key press...
IF BINAND(Dev_event,1)<>0 THEN
! If so, then determine which key.
OUTPUT QHp8711;"SYST:KEY?"
ENTER Q@Hp8711;Keycode
END IF
END IF
l
! Reenable the interrupt in case wrong key
! was pressed.
ENABLE INTR Isc
GOTO Norm
END

8-81

Front Panel Keycodes

Front Panel Keycodes

Your program can monitor the analyzer’s front panel and determine when a
key has been pressed or when the knob (RPG — rotary puise generator) has
been turned. Key presses from an attached PC DIN keyboard can also be

captured.

When keys are pressed or when the knob is turned, the analyzer detects

this event, sets bit 0 of the Device Status Register (see Chapter 5, “Using
Status Registers”) and stores the associated information in a key queue. Your
program can use the SCPI SYSTem:KEY commands to read the contents of the
key queue.

The SCPI query SYSTem:KEY : TYPE? returns a string indicating the type of
key press event:

Return Value Mazaning
NONE No key hes been pressed
KEY A front panel key has been pressed
RPG The analyzer's knob has been turned
ASC A key on the ASCII PC DIN keyboard has been pressed

The SCPI query SYSTem:KEY[:VALue] ? returns a number describing the
type of key press. The meaning of the number depends on the key type
returned by the SYSTem:KEY:TYPE? query:

SYST:KEY:TYPE SYST:KEY: VALUE Meaning
NONE No meaning. Returns -1.
KEY A number from 0 to 56 representing the “key sode” of the front

panel key. See following tsble for list.

RPG The number of knob “ticks®. Positive values ndicate a clock-wrse
turn; negative numbers indicate counter-clockwise. Larger numbers
indicate the knob has been turned faster or further.

ASC The ASCIl value of the pressed key.

Frant Panel Keycodes

The SYSTem:KEY[:VALue]? query removes the key from the key queue,
so that you can read the next key. For this reason, you must perform the
SYSTem:KEY : TYPE? query before performing the SYSTem:KEY[:VALue]?.

The gqueue that stores the key press events has a finite length. In firmware
revision B.03.00, this length is 32. This means that after 32 key presses occur
without being read (using SYSTem:KEY[: VALue] ?), subsequent key presses
or knob ticks will be ignored.

Your program can query the queue length using the SCPI command:
SYSTem:KEY:QUEue :MAXimum?

You can clear the queue using:
SYSTem:KEY:QUEue:CLEar

You can check how many key presses or knob tick events have occurred using
SYSTem:KEY :QUEUE:COUNt?

Finally, you can turn the key queue on or off using
SYSTem:KEY:QUEUE[:STATe] <ON|OFF>

When the queue is turned off, your program must read each key before a
following key is pressed, or information will be lost. It is generally best to
leave the queue enabled.

For a complete example of how to read the front panel keys and knob, refer
to the KEYCODE example program.

9-3

Front Panel Keycodes

Key Key Label Kay Key Key Label Key
Group Code Graup Code
Softkeys 0 {minus/backspacs| 22

1 (1) Istep upi 23
2 (3) tstep down| 24
3 Festure 40
Keys

4
41

5
42

6
43

7
44
Numeric i0 45

Keys

{onel 11 48
(twal 12 &
(three] 13 48
@ {four} 14 49
(B) ffivei 15 50
Isix] 16 51
{seven) 17 52
{eight] 18 53
@ {nine 19 54
20 55
o1 56

9-4

10

Introduction to SCPI

Introduction to SCPI

This chapter is a guide to HP-IB control of the analyzer its purpose is to
provide concise information about the operation of the analyzer under HP-IB
control. The reader should already be familiar with making measurements
with the analyzer and with the general operation of HP-IB.

Standard Commands for Programmable Instruments (SCPI) is a programming
language designed specifically for controlling instruments by Hewlett-Packard
and other industry leaders. SCPI provides cormmands that are common from
one instrument to another. This elimination of “device specific’ commands
for common functions allows programs to be used on different instruments
with very little modification.

SCPI was developed to conform to the IEEE 488.2 standard

(replacing IEEE 728-1982). The IEEE 488.2 standard defines the syntax and
data formats used to send data between devices. the siructure of status
registers, and the commands used for common tasks. For more information,
refer to the IEEE standard itself. SCPI defines the cominands used to control
device-specific functions, the parameters accepted by these functions, and the
values they return.

10-2

| The Command Tree

The SCPI standard organizes related instrument functions by grouping them
together on a common branch of a command tree. Each branch is assigned a
mnemonic to indicate the nature of the related functions. The analyzer has
16 major SCPI branches or subsystems. See Figure 10-1 for a model of how
these subsystems are organized to manage the measurement and data flow for

the analyzer.
PROGram |
R
. STATus !
e ——— !
‘ sysTem | DISPiay r———~ <COPV |
Aort { l
Sor?2] ! ! ™ 1 aata
= e ————= CALCulate —— =~DORMat t+——=
Ror0 SENSe | L i Dus |
Ext X or 1? ~i ' T |
ExtY or 12 ' | 4
A
. CALioration I (—paiE
| TRiGger , : C
Sxterna: Trioger L includes ‘ l i
ABORT . MMEMorv |
. INITiate |
S
. OUTPut L———J' SOURce | [*RlAc] | FORMat e
Source : [ce 1 © r———‘{ ‘ @ ous

Figure 10-1. Measurement and Data Flow of the Analyzer

10-3

introduction to SCP
The Command Tree

The analyzer's major SCPI subsystems and their functions are described

below.
ABORt Aborts any sweep in progress.
CALCulate Configures post-measurement processing of the measured

data (such as marker and limit testing functions).
CALibration Controls zeroing the broadband diode detectors.

DISPlay Controls the display of measurement data, annotation and
user graphics.
FORMat Controls the format of data transfers over the HP-IB.

{For more information about HP-IB data transfer refer to
Chapter 4, “Data Types and Encoding. ")

HCOPy Controls hardcopy {(printer and plotter; output.

INITiate Controls the triggering of sweeps.

MMEMory Controls mass storage of instrument states and data (disk
and internal memory interface functions).

0UTPut Turns on/off the source output power (power to the device
under test).

PROGram Interfaces IBASIC programs and cominands with an

external controller. (For more information on IBASIC
programming refer to HP Instrument 3ASIC User’s
Handbook.)

SENSe Configures parameters (such as the frequency and
measurement parameters) related to the sweep and
the measured signal (from the device under test). This
subsystem also controls the narrowband calibration
routines.

SOURce Controls the RF output power level of the source (power to
the device under test).

10-4

{ntroduction to SCP
The Command Tree

STATus Contains the commands for using the SCPI status registers.
(For more information about using the status registers refer
to Chapter 5, “Using Status Registers.”)

SYSTem Contains miscellaneous system configuration commands
(such as I/O port, clock and softkey control).
TRACe Interfaces with the internal data arrays (functions such as

data transfer and trace memory).
TRIGger Controls the source of the sweep triggering.

When many functions are grouped together on a particular branch, additional
branching is used to organize these functions into groups that are even more
closely related. The branching process continues until each analyzer function
is assigned to its own branch. For example, the function that turns on and
off the marker tracking feature is assigned to the TRACKING branch of the
FUNCTION branch of the MARKER branch of the CALCULATE subsystem. The
command looks like this:

CALCULATE:MARKER :FUNCTION: TRACKING ON

NOTE

Colons are used to indicate branching points on the command tree. A parameter is separated from the
rest of the command by a space

10-5

Imtroduction to SCP!
The Command Tree

CALCulate

MARKer

'STATe | MODE FUNCtion MAZ 1 ium
| b

T

! \ ‘
BWIDth TRACking RESUlt

COMMAND TREE

| { PARAMETERS

Figure 10-2. Partial Diagram of the CALCulate Subsystem Command Tree

10-6

Sending Multiple Commands .

Multiple commands can be sent within a single program message by
separating the commands with semicolons. For example, the following
program message — sent within an HP BASIC OUTPUT statement — turns on
the marker reference and moves the main marker to the highest peak on the
trace:

QUTPUT 716;"CALCULATE : MARKER :MODE
RELATIVE; : CALCULATE : MARKER : MAXTMUM"

Omne of the analyzer’'s command parser main functions is to keep track of a
program message's position in the command tree. This allows the previous
program message 10 be simplified. Taking advantage of this parser function,
the simpler equivalent program message is:

QUTPUT 716;"CALCULATE:MARKER:MODE RELATIVE;MAXIMUM"

In the first version of the program message, the semicolon that separates the
two commands is followed by a colon. Whenever this occurs, the command
parser is reset to the base of the cormmand tree. As a result, the next
command is only valid if it includes the entire mnemonic path from the base
of the tree.

In the second version of the program message, the semicolon that separates
the two commands is not followed by a colon. Whenever this occurs, the
command parser assumes that the mnemonics of the second command arise
from the same branch of the tree as the final mnemonic of the preceding
command. MODE, the final mnemonic of the first command, arises from the
MARKER branch. So MAXIMUM, the first mnemonic of the second command is
also assumed to arise from the MARKER branch.

The following is a longer series of commands — again sent within HP BASIC
OUTPUT statements — that can be combined into a single program ressage:

OUTPUT 716;"CALCULATE:MARKER:STATE ON"

OUTPUT 716;"CALCULATE :MARKER:MODE RELATIVE"

OUTPUT 716;'"CALCULATE :MARKER : MAXTMUM"

OUTPUT 716;"CALCULATE :MARKER:FUNCTION:TRACKING ON"

The single program message is:

DUTPUT 716;"CALCULATE :MARKER:STATE ON;MODE
RELATIVE; MAXIMUM; FURCTION: TRACKING ON"

10-7

. Command Abbreviation .

Each command mnemonic has a long form and a short form. The short forms
of the mnemonics allow you to send abbreviated commands. Only the exact
short form or the exact long form is accepted. ‘

The short form mnemonics are created according to the following rules:

o If the long formm mnemonic has four characters or less, the short form is the
same as the long form. For example, DATA remains DATA.

o [f the long form mnemonic has more than four characters and the fourth
character is a consonant, the short form consists of the first four characters
of the long form. For example, CALCULATE becomes CALC.

o If the long form mnemonic has more than four characters and the fourth
character is a vowel, the short form consists of the first three characters of
the long form. For example, LIMIT becomes LIM.

NOTE

The short form of a particular mnemonic s indicated by the use of UPPER-CASE characters in ths
manual.

SCPlis not case sensitive so any mix of upper- and lower-case lettering can be used when sending
commands to the analyzer.

If the rules listed in this section are applied to the last program message in
the preceding section, the statement:

OQUTPUT 716;"CALCULATE:MARKER:STATE ON;MODE
RELATIVE; MAXIMUM;FUNCTION:TRACKING ON"

becomes:
OUTPUT 716;"CALC:MARK:STAT ON;MODE REL;MAX;FUNC:TRAC ON"

10-8

| Implied Mnemonics

Some mnemonics can be omitted from HP-IB commands without changing

the effect of the command. These special mnemonics are called implied
mnemonics, and they are used in many subsystems. In addition to entire
mnemonics, variable parts of some mnemonics may also be implied. These
are usually a number indicating a particular measurement channel, marker, or
similar choice.

NOTE

When a number is not supplied for an implied variable, a default cheice is assumed; this choice 15

atways 1.

The INITIATE subsystem contains both the implied mnemonic IMMEDIATE
at its first branching point and an implied variable for the measurernent
channel. The command to trigger a new sweep is shown in the “SCPI
Command Summary” as:

OUTPUT 716;"INITiate[1]2][:IMMediate]

Any of the following forms of the command can be sent to the analyzer (using
HP BASIC) to trigger a new sweep on channel 1:

QUTPUT 716;"INITIATEL:IMMEDIATE"
OUTPUT 716;"INITIATE:IMMEDIATE"
OUTPUT 716;"INITIATEL"

QUTPUT 716;"INITIATE"

If the sweep is to be triggered for measurement channel 2, the channel
number must be specified:

OUTPUT 716;"INITIATE2:IMMEDIATE"
OUTPUT 716;"INITIATE2"

10-9

Parameter Types

Parameters are used in many commands. The analyzer uses several tvpes of
parameters with different types of commands and queries. When a parameter
is sent with a SCPI cormmand it must be-separated from the cormmand by a
space. If more than one parameter is sent they are separated from each other
by commas.

Numeric Parameters

Most subsystems use numeric parameters to specify phvsical quantities.
Simple numeric parameters accept all commonly used decimal representations
of numbers, including optional signs, decimal points, and scientific notation.
If an instrument setting programmed with a numeric parameter can only
assume a finite number of values, the instrument automatically rounds the
parameter. In addition to numeric values, all numeric parameters accept
MAXimum and MINimum as values (note that MAXimum and MINimum can be
used to set or query values).

<num> is used in this document to denote a numeric parameter.

An example is the command to set the stop frequency for a measurement.
The first command below sets the stop frequency to a specific value. The
second command below sets the stop frequency to its maximum possible
value (1300 MHz for HP 8711B/12B or 3000 MHz for HP §713B/14B).

OUTPUT 716;"SENSE1:FREQUENCY:STOP 1300 MHZ"

OUTPUT 716;"SENSE1:FREQUENCY:STOGP MAX"

10-10

Introduction to SCPI
Parameter Types

Query Response When a numeric parameter is queried the number is returned in one of the
three numeric formats.

NR1 Integers (such as +1, 0, -1, 123, -12345)

NR2 Floating point number with an explicit decimal point (such as
12.3, +1.234, -0.12345)

NR3 Floating point number in scientific notation (such as
+1.23E+5, +123.4E-3, -456.789E +6)

An exaruple is the response to a query of the stop frequency after executing
the above commands (this response is of the NR3 type).

QUTPUT 716;"SENSE1:FREQUENCY:STOP?"

returns the value 1.3E+9.

Character Parameters

Character parameters (sometimes referred to as discrete pararmeters) consist
of ASCII characters. They are typically used for program settings that have a
finite number of values.

These parameters use mnermonics to represent each valid setting. Thev have
a long and a short formm which follow the same ruies as command mnemonics.

<char> is used in this document to denote a character parameter.

An example of a command using a character parameter is the command that
selects the format in which the measurement data is displayed:

OUTPUT 716;"CALCULATE1:FORMAT MLOGARITHMIC"

Qusry Response When a character parameter is queried the response is always the short form
of the mnemonic that represents the current setting. An example is the
response to a query of the data format after executing the above command.

OUTPUT 716;"CALCULATE1:FORMAT?"
returns the value MLOG.

10-11

intraduction to SCPI
Parameter Types

Query Response

Boolean Parameters

Boolean parameters are used for program settings that can be represented by
a single binary condition. Commands that use this type of parameter accept
the values ON (or 1) and OFF (or 0).

<ON|OFF> is used in this document to denote a boolean parameter.

An example of a command that uses a boolean parameter is the command
that makes the analyzer continuously trigger (or stop triggering)
measurements.

QUTPUT 716;"INITIATE:CONTINUQUS ON"

A special group of commands uses boolean parameters to control automatic
functions of the instrument, such as automatically selecting the fastest
possible sweep speed. With these automatic functions an additional value is
available for the parameter. This value ONCE causes the function to execute
once before turning off.

The response when a boolean parameter is queried is a single NR1 number
indicating the state 1 for on or O for off. An exampie is the response to a
query on the sweep trigger status after executing the above command.

OUTPUT 716;"INITIATE:CONTINUQUS?"

returns the value 1.

10-12

Introduction to SCP!
Parameter Types

String Parameters

String parameters can contain virtually any set of ASCII characters. The
string must begin with a single quote (’) or a double quote (") and end
with the same character (called the delimiter). The delimiter can be included
as a character (embedded) inside the string by typing it twice without any
characters in between. For example:

OUTPUT 716;"DISP:ANN:TITL:DATA ’'DUT’’S PHASE’"
<string> is used in this document to denote a string parameter.

A example of a command that uses a string parameter is the CONFIGURE
cornmand:

OUTPUT 716;"CONFIGURE °*FILTER:TRANSMISSION’"

Some of the string parameters used by the analyzer, like

’FILTER: TRANSMISSION’ in the example above, follow the same rules that
apply to mnemonics. They may have branching (' FILTER :REFLECTION’ is a
related command) and abbreviated versions.

Query Response The response when a string parameter is queried is a string. The only
difference is that the response string will only use double quotes as
delimiters. Embedded double quotes may be present in string response data.
When the string follows the “SCPI” mnemonic ruies, the string returned in
response to a query is in the abbreviated form. An exampie is the response
to the configuration status of the analyzer (after executing the last command).

QUTPUT 716;"CONFIGURE?"
returns the value "FILT: TRAN".

10-13

Introduction to SCPI
Parametar Types

Block Parameters

Block parameters are typically used to transfer large quantities of related data
(like a data trace). Blocks can be sent as definite length blocks or indefinite
length blocks — the instrument will accept either formm. Ior more information
on block data transfers refer to Chapter 4, “Data Types and Encoding.”

<block> is used in this document to denote a block parameter.

10-14

Syntax Summary -

The following conventions are used throughout this manual whenever SCPI
mnermonics are being described.

angle brackets (< >) are used to enclose required parameters within a
command or query. The definition of the variable is
usually explained in the accompanying text.

square brackets ([]) are used to enclose implied or optional parameters
within a command or query.

UPPERIlower case are used to indicate the short form (upper-case) of a
given mnemonic. The remaining (lower-case) letters
are the rest of the long form mnemonic.

’, "
!
S =
' \;/ | N’
?
= KEYWORD —1d spacels) - sarameter —es SUTfix mt—eim ZOL ——
: - | ! i J b : ; ;

Figure 10-3. SCPI Commang Syntax

10-15

Introduction 1o SCP!
Syntax Summary

The following elements have special meanings within a SCPI program
message (or combination or mnemonics).

colon ()

semicolon (;)

comma (,)

space ()

When a command or guery contains a series of
mnemonics, they are separated by colons. A colon
Immediately following a mnemonic teils the command
parser that the program message is proceeding to the
next level of the command tree. A colon immediately
following a semicolon tells the command parser that
the program message is returning to the base of the
cormmand tree.

When a program message contains more than one
command or query, a semicolon is used to separate them
from each other.

A comma separates the data sent with a command or
returned with a response.

One space is required to separate a command or query
from its data (or parameters). Spaces are not allowed
inside a comumand or query.

10-16

IEEE 488.2 Common Commands

IEEE 488.2 defines a set of common commands. All instruments are required
to implement a subset of these commands, specifically those commands
related to status reporting, synchronization and internal operations. The rest
of the common commands are optional. The following list details which of
these [EEE 488.2 common commands are implemented in the analyzer and
the response of the analyzer when the command is received.

*CLS Clears the instrument Status Byte by emptying the error
queue and clearing all event registers, also cancels any
preceding *0PC command or query (does not change the
enable registers or transition filters).

*ESE <num> Sets bits in the Standard Event Status Enable Register —
current setting is saved in non-volatile memory.

*ESE? Reads the current state of the Standard Event Status Enable
Register.

*ESR? Reads and clears the current state of the Standard Event
Status Register.

*IDN? Returns a string that uniquely identifies the anaivzer. The

string is of the form

"HEWLETT-PACKARD,8711B,<serial number>,<software revision>"

*LLRN? This returns a string of device specific characters that, when
sent back to the analyzer will restore the instrument state
active when *LRN? was sent. Data formatting (ENTER USING
"-K" in HP BASIC) or a similar technique should be used to
ensure that the transfer does not terminate on a carriage
return or line feed (both g and Lr are present in the learn
string as part of the data).

*0PC Operation complete command. The analyzer will generate
the OPC message in the Standard Event Status Register
when all pending overlapped operations have been
completed (e.g. a sweep, or a preset). For more information
about overlapped operations refer to “Overlapped
Commands” in Chapter 2.

10-17

Introduction to SCPI

|EEE 488.2 Common Commands

*0QPC7?

*0PT?

*PCB <num>

*PSC <num>

*RST

*SRE <num>

*SRE?

Operation complete query. The analyzer will return an
ASCII “1” when all pending overlapped operations have
been completed.

Returns a string identifying the analyzer's option
configuration. The string is of the form "1E1,1C2". The
options are identified by the following:

1EC 75 ohm
Ha 60 dB step attenuator
102 [BASIC

1DA AM dalay {50 QI
10B AM delay {75 QI

Sets the pass-control-back address (the address of the
controller before a pass control is executed).

Sets the state of the Power-on Status ('lrar flag — flag is
saved in non-volatile memory. This flag determines whether
or not the Service Request enable register and the Event
Status enable register are cleared at power-up.

Executes a device reset and cancels anv pending *0PC
command or query. The contents of the instrument’s
nonvolatile memory are not affected by this command.

This command is different from the front panel
function in the state of the commands (and their reset
states) listed below.

The preset instrument state is described in the User’s Guide.

INITiate:CONTinuous ~ OFF
QUTPut [:STATe] = OFF
CALibration:ZERO:AUTO - OFF
SENSe:CORRection[:STATe] - OFF
SENSe:SWEep:POINts = MAX
SOURce:POWer - MIN

Sets bits in the Service Request Enable Register. Current
setting is saved in non-volatile memory.

Reads the current state of the Service Request Enable
Register.

10-18

Introduction to SCPI

*STB? Reads the value of the instrument Status Byte. This is a
non-destructive read, the Status Byte is cleared by the *CLS
command.

*TST? Returns the result of a complete self-test. An ASCI 0

indicates no failures found. Any other character indicates a
specific self-test failure. Does not perform any self-tests. See
the Service Guide for further information.

*WAI Prohibits the instrument from executing any new commands
until all pending overlapped commands have been
completed.

*TRG Triggers a sweep on the active channel when in Trigger Hold

mode. Ignored if in continuous sweep.

10-19

introduction to SCP

11

Menu Map with SCPI
Commands

Menu Map with SCPI Commands

This chapter contains a map of all the softkey menu choices in the analyzer.
There is a table for each major hardkey on the analyzer's front panel. The
softkeys are shown with corresponding SCPI commands (if one exists).
ardkeys are indicated with the (Hardkey) notation, softkeys are shown as

;s SCPI commands are all shown in their short form.

Some commands (such as source settings) have mnemonics that specify
the channel in use. These mnemonics are shown as SENS[112]: . .
indicating that either channel could be used. The actual mnemonic entered

would be SENS1: ... for setting channel 1 or SENS2: ... for channel
2. Mnemonics for keys that toggle between two states are shown as . ..
ON | OFF.

<num> and <string> refer to parameter types described in the “Parameter
Types” section. <string> parameters are typically enclosed in single quotes
(’the string data’).

SCPI Command

KEYSTROKES SCPI COMMAND

SYST:PRES; *WAI

11-2

Manu Map with SCPl Commands

\} SCP1 Commaads

KEYSTROKES SCPi COMMAND

CONF ’AMPL:TRAN’;*WAI
CONF ’AMPL:REFL’;*WAI
CONF ’AMPL:POW’;=*WAI

CONF 'FILT:TRAK’;*WAI
CORF ’FILT:REFL’;*WAI

CONF ’BBAN:TRAN’;*WAI

Reflection CONF ’BBAN:REFL’;*WAI

Mixer
Conversion.Loss. CONF ’MIX:CLOS’;*WAI

CONF ’MIX:REFL’;*WAI

CONF ’MIX:GDEL’;*WAI

1 Options 1DA and 1DB enly

11-3

Menu Map with SCPI Commands

SCPI Commands (centinued)

KEYSTROKES

SCPi COMMAND

COEF[1]2] ’*CABL:TRAN’;*WAI
CONF[1/2] ’CABL:REFL’;+WAI

CONF{112] ’CABL:FAULT’;*WAI

SEES{1/2] :DIST:STAR <num> [FEET|MET];*WAI
SENS[112] :DIST:STOP <num> [FEET|MET];*WAI
SENS:DIST:UNIT FEET

SEES:DIST:UNIT MET

SENS :FREQ:MODE LOWP;*WAI

SEKS:FREQ:MODE CENT;*WAI
DISP:ANN:FREQ[1]2] :MODE CSPAR

SENS([1(2] :FREQ:CERT <num> [MEZ|KEZ!HZ];
*WAI

CONF[1]2] ’CABL:SRL’;*WAI
DISP:ANN:FREQ[1{2] :MODE SSTOP

SEES[1)2] :FREQ:STAR <num> [MHZI|KHZ|HZ];
*WAT

DISP:ANN:FREQ[1|2] :MODE SSTQOP

SENS[1|2] :FREQ:STOP <num> [MHZ|KHZ|HZ];
*WAI

SENS[1[2] : CORR:MODEL: CONX

SENS[11/2] :CORR:LENG:CONN <num>
SENS[1/2] : CORR:CAP:CONF <num>

1 Optisn 100 only

Menu Map with SCP} Commands

SCPi Commands (continued)

SCPi COMMARD

SENS:FREQ:ZST <num> [MHZ|KHZ|HZ]
SENS[1|2] :FUNC:SRL:MODE <AUTO|MANUAL>
SENS[1]2] :FUNC:SRL:IMP <num>
SENS[112] :FUNC:SRL:SCAN;*WAI
SENS[1]2) :SWE:POIN <num>;*WAI

No SCPi command

11-5

Menu Map with SCPI Commands

(CHAN 1) | (CHAN 2) SCPi Commands

KEYSTROKES

SCPI COMMAND

(CHAN 1)|(CHAN 2)

Fault-Location !
sRL!
More:

Pomer

AM Delay 2

Detection.Options

Kar‘rosrband: Internal

A
B
R
AFR

SENS([1]2]:STAT

SERS[1(2] : FURC
DET NBAN;*WAI

SENS[1/2]:FUNC
DET NBANK;*WAI

SENS{112]:FUNC
DET NBAK;*WAI

SERS[1(2] :FUNC
DET NBAN;*WAI

SENS[1]2] :FUNC

SENS[1/2] :FUKNC
DET BBAN;=*WAI

SENS[1|2] :FUNC
DET BBAN;=*WAI

SENS[112]:FUKNC
SENS([112] :FUKRC
SENS[1|2] :FUNC

SENS[1]2]:FUNC
DET NBAN;*WAI

SENS[1]2] :FUNC
DET NBAN;=*WAI

ON;*WAI

'XFR:POW:RAT 2,0°;

'XFR:POW:RAT 1,0’;

'FLOC 1,07;

’SRL 1,07;

’XFR:POW 2’ ;DET BBAN;*WAI

'XFR:POW:RAT 2,0°;

'XFR:GDEL:RAT 12,11°;

’XFR:POW 1’;DET NBAN;=*WAI
’XFR:POW 2’ ,;DET NBAN;*WAI
’XFR:POW O’ ;DET NBAN;=*WAI
'XFR:POW:RAT 1,07

'XFR:POW:RAT 2,0’;

1 Optian 100 only
2 Dpuons 1DA and 1DB only

(CHAN 1} | (CHAN 2) SCPI Commands

Menu Map with SCPI Commands

KEYSTROKES

SCPFi COMMAND

Chan: OFF

/%

SERS([1/2]:FUNC
SENS[1|2] :FUNC

SERS[112] :FUNC
DET BBAN;=*VAI

SENS[1|2]:FUNC
SENS([112] :FURC

SENS[1]2] :FUNC
DET BBAN;*WAT

SENS[1]2] : FUNC
DET BBAN;=*WAI

SENS[112] : FUNC ’XFR:

DET BBAN;*WAI
SENS[1/2]:FUNC
SENS[1]2] :STAT

'XFR:
'XFR:
'XFR:

'XFR:
*XFR:
’XFR:

'XFR:

’XFR:
OFF; *WAI

POW 2’ ;DET BBAN;*WAI
POW O’;DET BBAN;*WAI

POW:RAT 2,0°;

POW 11’ ;DET BBAN;*WAI

POW 12’ ;DET BBAR;*WAI

POW:RAT 11,12°;

POW:RAT 12,11°;
POW:RAT 12,07;

VOLT’ ; *WAI

Menu Map with SCPI Commands

(FREQ) SCPI Commands

KEVSTROKES

SCPi COMMAND

Fault.Loc F‘-reqnericy 1
Low Pass
Band Pass
Band Pags Nax. Span:

DISP:AWN:FREQ[1!2] :MODE SSTOP

SENS{1{2] :FREQ:STAR <num> [MHZ|KHZ|HZ];
*WAI

DISP:ANN:FREQ[1|2] :MODE SSTOP

SENS[1!2] :FREQ:STOP <num> [MHZ|KEZ|HZ];
*«WAI

DISP:ANN:FREQ[1|2] :MODE CSPAKR

SENS[112] :FREQ:CENT <num> [MHEZ!XHZ|EZ];
*WAT

DISP:ANN:FREQ[1]2] :MODE CSPAN

SENS(12) :FREQ:SPAN <num> [MHZ|KHZ!HZ];
*WAT

DISP:ANN:FREQ[1/2] :MODE CW;
:SENS[1]2] :FREQ:SPAN 0;*WAI

SENS[1|2] :FREQ:CENT <num> [MHZ|KHZ|BZ];
*WAI

SENS:FREQ:MODE LOWP;*WAI
SENS:FREQ:MODE CENT;*WAI

SENS[1]2] :FREQ: SPAN:MAX <num>
[MHZ |KBZ) HZ]

1 Optisn 100 only

11-8

Menu Map with SCP! Commands

SCPi COMMARD

DISP:ANN:FREQ:RES MHZ
DISP:ANN:FREQ:RES KHZ

DISP:ANN:FREQ:RES HZ

11-9

Menu Map with SCPI Commands

SCP! Commands

KEYSTROKES SCPI COMMAND

SOUR[112] :POW <num> [dBm];*WAI

OUTP <ON|OFF>;*WAL

Start-Power (Number) (ENTER) SOUR:POW:STAR <num> [dBm] ;*WAI

SOUR:POW:STOP <num> [dBm];*WAI

Stop. Power

SOUR:POW:RARG ATTO;*=WAI
SOUR:POW:RANG ATT10;*WAI

~33 to —18 (dBm) SOUR:POW:RANG ATT20;*WAI
—43 to. 28 (dBm) SOUR:POW:RANG ATT30;*WAT
_53 to —38 (dBm) SOUR:POW:RANG ATT40;*WAI
_60 to —48 (aBm) SOUR: POW:RANG ATTSO0;*WAI
_60 to _58 (dBm) SOUR:POW: RANG ATT60;*WAT

1 The numbers shown on the range keys wifl depend on the options installed in the analyzer. Also, if the step aftenuator optisn 1= rat installed, these keys wall not
appeat.

11-10

Menu Map with SCPl Commands

SCPI Commands

KEYSTROKES SCPi CORMIAND

SENS[112] :SWE: TINE <num>
[as|fs|ps|ns|usimsis]!;*WAI
SERS[1|2] :SWE: TIME:AUTO <ON|OFF>;*WAI

SENS:COUP <NONE|ALL>;*WAI

POW:MODE:FIX;*WAI

POW: MODE :SWE ; *WAI

1 {f using the microsscond suffix {"us”l, the latter “u” must be used. Do not use the Gresk character “y.”

11-11

Menu Map with SCP! Commands

SCPI Commands

KEYSTROKES

SCPI COMMAND

External.Sueep

External. Point

Number of Points (Number) (ENTER)

Distance !

Start Distance {(Number) (ENTER)
Stop Distance (Number) (ENTER)

Fesat

Meters

SRL. Cable Scan!

ABOR; :INIT[112]:CONT ON;*WAI

ABOR; :INIT[1]2]:CONT OFF; *WAI

ABOR; :INIT[1|2]:CONT OFF;:INIT[1{2];*WAI

TRIG:SOUR
IMM; *=WAI

TRIG:SOUR
IMM; *=WAI

TRIG:SOUR
EXT; *WAI

SERS[1]2]:

SENS[1]2]
SENS[1]2]
SENS:DIST

SENS:DIST:

SENS[1]2]

SENS:ROSC:

IMM; :SERS:SWE:TRIG:SOUR

EXT; :SERS:SWE:TRIG:S0UR

EXT; : SERS:SWE: TRIG:SOUR

SWE:POIN <num>;*WAI

:DIST:STAR <num> [FEET|MET];+WAI
:DIST:STOP <num> [FEETI|MET];*WAI

:UNIT FEET

URIT MET

:FUNC:SRL:SCAN; *WAI

SOUR <EXT|INT>;*WAI

1 Option 108 only

11-12

Menu Map with SCP! Commands

SCPI Commands (continued)

KEYSTROKES

SCPi COMBARD

DIAG:SPUR:METHE NONE;*¥WAIL
DIAG:SPUR:METH DITH; *WAI
DIAG:SPUR:METH AVOD;*WAI

11-13

Meny Map with SCPI Commands

SCALE

SCPI Commands

KEYSTROKES

SCPI COMMAND

evel (Number) (ENTER)

Reference: Position (Number) (ENTER)

%9 Electrical Delay (Number) (ENTER)

DISP:WIND[1[2]:TRAC:Y:AUTO ONCE
DISP:WIND([1{2]:TRAC:Y:PDIV <num>
DISP:WIND[1|2] :TRAC:Y:RLEV <num>

DISP:WIND[1|2]:TRAC:Y:RPOS <num>

SENS([1/2] :CORR:0FFS:PHAS <num> [DEG]

SENS[11{2] :CORR:EDEL:TIME <num>
[as|fsipsinsius|msis]?

1 If using the microsecond unrt termenator, the iefter “u” must be used. Do not use the Greek character “u.”

11-14

< indicates HP 87128B/14B only

Menu Map with SCPI Commands

KEYSTROKES SCPI COMMAND

CALC[112] :MARK1 OX
CALC[112] :MARK1:X <num> [MHZ|KHZ|HZ]

CALC[1]2] :MARK2 CK
CALC[1!2] :MARK2:X <num> [MHZ|KHZ|BZ]

CALC[1/2] :MARK3 OF
CALC[1|2] :MARK3:X <num> [MHEZ|KHEZ|HZ]

CALC[1]2] :MARK4 ON
CALC[1!2] :MARK4:X <num> [MHZ|KBZ|EZ]

5 or B> CALC[1]2] :MARKS ON

(Number) Units CALC[1]2] :MARK5:X <num> [MHZ|KHZ|HZ]
62 or B> CALC[1]2] :MARK6 ON

Units CALC[1/2] :MARK6:X <num> [MHZ|KHZ|EZ]
T:or T> CALC[1{2] :MARK7 ON

CALC[1]2]:MARK7:X <num> [MHZ|KHZ|HZ]
CALC[1[2] :MARK8 OXN
CALC[1!2] :MARKS:X <num> [MRZI|KHZ|BZ]

CALC[112] :MARK[112]---8] OFF

11-15

Menu Map with SCP! Commands

SCP1 Commands (continued)

KEYSTROKES SCPi COMMAND

CALC[112] : MARK: AOFF

CALC[1]2] :MARK:MODE <REL|ABS>

SENS[1]2] :FREQ:CEXRT
(CALC[112] :MARK[1]2| ... 81:X:ABS?);#*WAI

DISP:WIND[1]2]:TRAC:Y:RLEV
(CALC[112]:MARK[1]2! ... 8]:Y?);*WAI

SENS[1/2] : CORR:EDEL: TIME
(CALC[1]12] :MARK[1(2} ... 8]:GDEL?);*WAI

Marker Math:
Stavistics CALC[1]2] : MARK:FUNC STAT

S CALC[12] :MARK:FURC FLAT
RF Filter Stats CALC[112] :MARK:FUNC FST
¥ath Off CALC[12] :MARK:FUNC OFF

Marker Search

Max:Search CALC[1]2] :MARK:FUNC MAX
Mkr —> Max CALC[1]2] : MARK:FUNC MAX
Hext Peak Left CALCI[1(2] :MARK :MAX:LEFT

CALC[1]2] :MARK:MAX:RIGH

CALC[1]2] : MARK:FUNC MIK
CALC[1/2] :MARK:FUNC MIN
CALC[1{2] :MARK:MIN:LEFT

CALC[1)2] :MARK:MIN:RIGH

11-16 B indicatas HP 87128148 only

Menu Map with SCPI Commands

SCPi Commands (continued) (continued)

SCPi COMMAND

Tracking on OFF

carLc{1(2]

caLcli12]
[pB]

CALC[1i2]
CALC[1}2]
CALC[1]2]
CALC[1]2]
CALC[1]2]
CaLcl1l2]

cALcf1(2]
CALC[1]2]
cALc[112]
CALC[1]2]

: MARK
:MARK

:MARK:
:MARK:
:MARK:
:MARK:
:MARK:
:MARK

:MARK:
:MARK
:MARK:
:MARK:

:FUNC TARG
:TARG <LEFT|RIGH>,<num>

TARG LEFT,<num> [DB]
TARG RIGH,<num> [DB]
FUNC BWID

BWID <num> [DB]

FUEC NOTC

:NOTC <num> [DB]

FUNC MPE
:FUNC MNOT
FUNC OFF
FUNC:TRAC <ON|OFF>

11-17

Menu Map with SCP! Commanas

SCPI Commands

KEYSTROKES SCPI COMMAND

TRAC CH[1!2]SMEM,CH[1|2]SDATA;
:CALC[1]12]:MATH (IMPL/CH[1|2]SMEM);
:DISP:WIND{1|2]:TRAC1 ON;TRAC2 OFF

Data->Mem TRAC CH[1|2]SMEM,CH[1/2]SDATA
Data CALC[1!2] :MATH (IMPL);
:DISP:WIND[1!2] :TRAC1 ON;TRAC2 OFF
M¥amory DISP:WIBD[1!2]:TRAC1 OFF;TRAC2 ON
Data/Mem CALC[1{2] :MATH (IMPL/CH[1!l2]SMEN);
:DISP:WIND[112]:TRAC1 OF;TRAC2 OFF
Data . and Nemory CALC[1/2]:MATE (IMPL);
:DISP:WIND[12]:TRAC1 ON;TRAC2 OX
Limit Ménu CALC[1]2]:LIM:DISP OX
AddiTimit
Add Max Line CALC[1[2]:LIM:SEGM[1[2! -:2]:TYPE LMAX;
STAT ON
Add Min Line CALC[112] :LIM:SEGM[1!2] .:2] :TYPE LMIK;
STAT ON
Add Max Point CALC(1/2] :LIM:SEGM[1]2]--12] :TYPE PMAX;
STAT ON
Adg Win:Point CALC[112]:LIM:SEGM[1]2| -12] :TYPE PMIN;
STAT ON

CALC[1{2]:LIM:SEGM[1{2]|---12] :STAT OFF

CALC[112] :LIM:SEGM: ACFF

11-18

Menu Map with SCPI Commands

SCP] Commands (continued)

KEYSTROKES SCP1 CORIEAAND

CALC[112]:LIM:SEGM[1]2]..-12] : FREQ:STAR.
<num> [MHZ|KHZ|HZ])

CALC[1]2]:LIM:SEGM[1]2]--12] :FREQ:STOP
<num> [MHZ|KHZ|HZ]

CALC[1{2|:LIM:SEGM[1]|2]--12] : AMPL:STAR
<num>

CALC[1[2] :LIM:SEGM[1]2].--12] : AMPL:STOP
<num>

CALC[1]/2]:LIM:DISP <OK|OFF>

CALC[1]!2] :LIM:MARK:STAT:PEAK:MAX <num>

CALC[1]2] :LIM:MARK:STAT:PEAK:MIN <num>

CALC[112] :LIM:MARK:STAT: <MEAK |PEAK |FLAT>
CALC[112]:LIM:STAT <ON|OFF>

DISP:FORM [SING|ULOW]

DISP:ARN:TITL1:DATA <string>
DISP:ANN:TITL2:DATA <string>
DISP:ARN:CLOC:MODE LINE1

DISP:ANN:CLOC:MODE LINE2
DISP:ANN:CLOC:MODE OFF

11-19

Menu Map with SCPI Commands

SCPI Commands {continued)

DISPLAY

KEYSTROKES SCPi COMMAND

DISP:ANN:TITL <ON|OFF>

DISP:ANN:YAX <OX|OFF>
DISP:ANN:YAX:MODE <REL|ABS>

DISP:WIND([1|2] :TRAC:GRAT:GRID <ON|OFF>

11-20

Menu Map with SCPI Commands

SCPi Commands

KEYSTROKES SCPI COMMAND

CALC[112]) :FORM MLOG

CALC[1!2] :FORM MLIN

CALC[1/2] :FORM SWR

CALC[1/2]:FORM GDEL

CALC[1|2] :FORM PHAS

CALC([112]) :FORM SMIT

CALC(1(2] :FORM DBUV

CALC[1}2]:FORM DBMV
CALC[112]:FORM DBV

More Ebrxﬁét'

& Polar CALC[1/2] :FORM POL
CALC[1|2] :FORM REAL

CALC[112] :FORM IMAG

CALC[112]:FORM MIMP

1 Option 1EC (75 Q} only

® indicates HP 87128/148 only 11-21

Menu Map with SCP! Commangs

KEYSTROKES

SCP1 COMMAND

Hsasure Standard

Response: & Isolation

Measure Standard - (oads
Measure-Standard - Through

Reflection
Restore Defaults

One Port

Hoasure- Standard — Open

TRAC CH[1|2]SMEM,CH[1]2]SDATA;
:CALC[1!2] :MATH (IMPL/CH[1]2]SMEM);
:DISP:WIND[112] :TRAC1 ON;TRAC2 OFF

SENS[1]2]:CORR:CSET DEF; *WAI

SENS[1(2]:CORR:COLL:IST OFF;METH
TRAK1; *WAI

SENS[112]:CORR:COLL STAN1;*WAI;
:SENS[1{2] : CORR:COLL:SAVE; *WAI

SENS([1(2] :CORR:COLL:IST OFF;METH
TRAR2; *WAI

SENS[1/2] :CORR:COLL STAN1;*WAI;

SENS[1]/2]:CORR:COLL STAN2;*WAI;
:SENS[1{2]:CORR:COLL:SAVE; *WAI

SENS[112]:CORR:CSET DEF; «WAI

SENS([1|2]:CORR:COLL:IST JFF;METE REFL3;
*WAT

SENS[1{2]:CORR:COLL STAN1;*WAI
SENS[1!2]:CORR:COLL STAN2;*WAI

SENS([1{2]:CORR:COLL STAN3;*WAI;
:SENS[1]2] :CORR: COLL:SAVE; *WAI

11-22

Menu Map with SCP! Commands

KEYSTROKES . SCPi COMMAND

SENS(1!2] :CORR:CSET DEF;*WAI

SENS([112] :CORR:COLL:IST ON;METH REFL3;
*WAT

SENS[1!2] :CORR:COLL STAN1;*WAI

SENS[1]2] :CORR: COLL STAN2;*WAI

SENS[1]2] : CORR: COLL STAK3;*WATI;
:SENS[1/2] :CORR:COLL:SAVE; *WAI

SERS([1}2] :CORR:RVEL:COAX <num>
SENS[1!2] :CORR:L0OSS:COAX <num>

SENS[i(2] :CORR:LENG:COAX <num>
[FEET | MET] ; *WAI

SEES[112] :CORR:RVEL ; *WAI
SENS[12] :CORR:PEAK:COAX [ON|OFF]
SENS[1]2] : CORR: THR:COAX <num>

SENS(1!2] :CORR:CSET DEF;*WAI

SERS[1]2] :CORR:COLL:IST ON;METH REFL3;
*WAT

SENS[12] :CORR:COLL STAN1;*WAI

SENS[1]2] :CORR:COLL STANZ2;*WAI

SENS[1/2] :CORR:COLL STAN3;*WAI;
:SENS{1]2] :CORR:COLL:SAVE; *WAI

1 Dption 100 only This selection {and its lower-evel menusi only appears when making fault location measurements
2 Option 100 onty This selection (and its lower-ievel menus) only appears when making SRL measurements

11-23

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES SCPI COMMAND

SENS[1/2]:CORR: MODEL: COKN
SENS([1/2]:CORR:LERG:CONN <num>

SENS[112] :CORR:CAP:CONN <num>

2: cutotf:Frequency SENS[1!2] :FREQ: ZST <num>

[GHZ |MHZ |KHZ | HZ]
Auto Z OF off SENS[1]2] :FUNC:SRL:MODE [AUTO!|MAN]
Hanual SENS[1|2] :FUNC:SRL:IMP <num>
A¥ l)elay'"1
Restore: Defaplts: SENS[11!2]:CORR:COLL:IST OFF;METH
TRAN1; *WAI
Response SENS[112]:CORR: COLL:IST OFF;METH
TRAN1; #WAI
Msasnre-Standard: SENS[1!2]:CORR:COLL STAN1;*WAI;
:SENS[1]2]:CORR: COLL: SAVE; *WAT
Cal Kit
Defanlt Type-E{f) SENS:CORR:COLL:CKIT ’COAX,7MM,TYPE-
¥,50,FEMALE'
SENS:CORR:COLL:CKIT
COAX,7MM, TYPE-N,75,FEMALE’ (option 1EC)
Type-¥{m) SENS:CORR:COLL:CKIT ’COAX,7MM,TYPE-

N,50,MALE’
SENS:CORR:COLL:CKIT
'COAX,7MM,TYPE-N,75,MALE’ (option 1EC)

1 Options 10A and 1DB only

11-24

Menu Map with SCPI Commands

SCP1 Commands (continusd)

KEYSTROKES

SCPi COMMAND

0 (Number) (ENTER)

P Port Ext’s on UFF

Port Extension (Number) (ENTER)

 Trans Port Extension (Number) (ENTER)

SENS:CORR:COLL:CKIT
’USER, IMPLIED, IMPLIED, IMPLIED,IMPLIED’

SEKS:CORR:COLL:CKIT
’COAX,3.5MM ,APC-3.5,50, IMPLIED’

SENS:CORR: COLL: CKIT
'COAX,TMM, TYPE-F,75, IMPLIED!

CAL:ZERO:AUTQ ON;*WAI
CAL:ZERO:AUTO ONCE; *WAI

SENS[1]2]:CORR:RVEL:COAX <num>
SENS(1(2] :CORR: IMP: INP:MAGN <num> [OHM]
SENS{1!2]:CORR:EXT [ON|(QFF]

SENS[1{2] :CORR:EXT:REFL: TIME <num>

[asifs|psinsiusimsis]?

SENS{1{2]:CORR:EXT:TRAK:TIME <num>
[as|fs|psins|us|ms|s]?

1 implemented in firmware revisions 8.03.01 and above

2 If using the microsecond unit terminator, the letter “u” must be used. Do not use the Gresk character “u.”

& indicates HP 87128/14B only

11-25

Menu Map with SCP! Commands

SCPI Commands
KEYSTROKES SCPI COMMAND

AVG
Average on-OFF SENS(1!2] : AVER <ON|OFF>;*WAI
Restart Averags. SENS[1]2] :AVER:CLE; *WAI
Average Factor (Number) (ENTER) SENS[112] :AVER:COUR <num>;*WAI
System:Bandwidth

Wide SERS[12] :BWID 6500 HZ;*WAI

Medium SENS[1/2] :BWID 3700 HZ;+WAIL

Narrow SENS([1|2] :BWID 250 HZ;*WAI

Fine: SENS(112] :BWID 15 HZ;*WAI
Fault Window

Minimum SENS([12] :WIND RECT

Medium SENS[1/2] :WIND HAMM

Maximum SENS[1/2] :WIND KBES
P Delay=Aperture

$P Aperture (8z) (Number) (ENTER) CALC[112] :GDAP:SPAN <num> [HZ];+WAI

& apert: CALC[1)2] :GDAP: APER <num>;*WAI

1 Opnon 100 only

11-26

B indicates HP 8712B/148B only

Menu Map with SCP! Commands

KEVSTROKES

SCP1 COkIRzAMD

,&ac"

MMENM:
:STOR:

:LOAD

:STOR:

:STOR:

:STOR:

STOR:

:STOR:
:STOR:

STAT

STAT

STAT:
STAT:
STAT:

TRAC
TRAC

:STAT

1,<tile>l

1,<tile>!

IST <ON|OFF>
CORR <ON|OFF>
TRAC <ON|OFF>

CH1FDATA,<file>!
CH2FDATA,<file>!

1,<file>!

1 <«file> may inciude the mass storage device mnemonic MEM:, INT., EXT:, or RARA: before the actual name of the file If the mass storage device is not
explicitty named the currently selected device is assumed. <file>, <file1> and <file2> are <string> paramaters. <string> parameters appesr batween

single quotes.

11-27

Menu Map with SCPl Commands

SCPI Commands (continued)

KEYSTROKES

SCPl COMMAND

BaSTC

Select Disk

Configure VOL_RAM

Restore Defaults

Modify Size

Current Size
Configure Ext-Disk.

Ext Disk Address (Number) (ENTER)
: -Unit: (Number) (ENTER)

MMEM:MSIS ’*MEM:’
MMEM:MSIS ’RAM:’
MMEM:MSIS ’INT:’
MMEM:MSIS ’EXT:’?

No SCPt command
No SCP! command

No SCP! command

SYST:COMM:GPIB:MMEM: ADDR <num>
SYST:COMM:GPIB:MMEM:UNIT <num>
SYST:COMM:GPIB:MMEM:VOL <num>

1 The IBASIC menu s described under the SYSTERY OPTIONS key

2 Active controlier status must be passed to the instrument (from !BASIC or the external controlier) for external disk access.

11-28

Menu Map with SCPl Commands

KEYSTROKES

SCPI COMMAND

Fomat
Format- HonVol RAM
Format Vol RAM

Format 3.5" Disk

MMEM:

MMENM:
MMENM:
:COPY
MMEM:

MMENM:
:COPY
MMEM:
MMEM:

MMEM:
MMENM:
MMEN:
MMENM :

:MOVE

<filel>,<file2>!

:DEL <file>!

DEL ’*. #1014

copPY
COPY

COPY

COPY

COPY
CCPY

INIT
INIT
INIT
IRIT

<fileil>,<’MEM:file2’>!
<filel>,<’RAM:file2’>!
<file1>,<’INT:file2’>!
<file1>,<’EXT:file2’>!?

w.%7 OMEN: 13
'x_ %7 RAM: 21,3
% %2 2INT: 13

%, %1 PEXT: 123

'MEM: ’ ,<DQS|LIF>*
RAM: ’,<DOS|LIF>
"INT:’,<DOS|LIF>*
'EXT:?,<DOS|LIF>Z:*

1 <file> may inciude the mass storage device mnemonic MENL:, INT:, EXT:, or RAM: befare the actual name of the file if the mass storage dewice 1s not explicitly
named the currently selected device is assumed. <file>, <file1> and <file2> are <string> paramaters.

2 Active controlier status must be passed to the instrument (from IBASIC or the external controler) for externai disk access.
3 **.* is the form for “all files” with a DOS formatted disk — a LIF formatted disk uses *** wath no extension.
4 When a disk is formatted using the front panel keys the DOS format is always used. The LIF format is available when the mnemonic is used.

11-29

Menu Map with SCPI Commands

SCP1 Commands (continued)

SAVE RECALL

SCPi COMMAND

MMEM:CDIR <directory>!

MMEM :MDIR <directory>!
MMEM:RDIR <d:i.re<:1.:ory>1

DISP:MENU:REC:FAST <ON!QFF>

1 For use with DOS formatted disks only — the analyzer does not support LIF disks that use HFS (hierarchical file structurel. <directory> 1s 2 <string>
parameter.

11-30

Maenu Map with SCPI Commands

SCPI Commands

KEYSTROKES SCPI COMMAND

HCOP; #WAI

HCOP : ABOR

No SCP! Command

HCOP:DEV:LANG <PCL|HPGL|IBM|EPSON|PCX>;
PORT <CENT|SER|GPIB(MMEM>

SYST:COMM:GPIB:HCOP: ADDR <num>

SYST:COMM:SER: TRAN:BAUD <num>

SYST:COMM:SER:TRAN:HAKD XON

DTR/DSR. SYST:COMM:SER: TRAN: HAND DTR

Detins Printer

Restore Defaunlts Ne SCPI Command
Monochrome HCOP:DEV1:COL OFF
Color HCOP :DEV1:COL ON
Portrait HCOP:PAGE:ORI PORT

HCOP:PAGE:ORI LAND
BCOP: ITEM1:FFE:STAT <ON|OFF>

11-31

Menu Map with SCP! Commands

SCPI Commands (continued)

SCPI COMMAND

Left Hargin (Number) (ENTER)
rint #idth (Number) (ENTER)

HMonochrome Pen (Number) (ENTER)
Default: Pen-Colors

Trace 1 Pen (Number)(ENTER)
Trace 2 Pen (Number)(ENTER)
Memory 1 Pen. (Number) (ENTER)
Memory 2 Pen (Number) (ENTER)

*sn. (Number) (ENTER)

No SCPi Command
HCOP:DEV:RES <num>

HCOP:PAGE:MARG:TOP <num>
HCOP:PAGE: MARG:LEFT <num>
HCOP:PAGE:WIDT <num>

No SCPI Command
HCOP:DEV2:COL OFF
HCOP:DEV2:COL ON

No SCPi Command
No SCP! Command
No SCP! Commang
Ne SCPI Command
No SCPI Command
No SCP! Command
No SCPI Command
Ne SCP! Cammand
HCOP:ITEM2:FFE:STAT <ON|CFF>

11-32

Menu Map with SCPI Commands

SCP! Commands (ceatinued)

KEYSTROKES SCPi COMMASND

No SCPI Command

HCOP:DEV:MODE GMAR
HCOP:DEV:MODE GRAP
HCOP : DEV:MODE MARK
HCOP:DEV:MODE TABL

Ne SCPl Command

HCOP:ITEM:TRAC:STAT <ON|OFF>
HCOP:ITEM:GRAT:STAT <ONI|OFF>
HCOP:ITEM: ANN:STAT <ON|OFF>
HCOP: ITEM:MARK:STAT <ON|OFF>

Title + Clk ON off HCOP:ITEM:TITL:STAT <ON|OFF>

11-33

Menu Map with SCPI Commands

(SYSTEM OPTIONS) SCP! Commands

KEYSTROKES

SCPi COMMARD

SYSTEM OPTIONS

Rum

Continue:

Stép

Edit

Keyf Becord on.OFF

Utilities
Clear Program
Stack-Size
Seoure

IBASIC Display
None
Fall
Upper

Lower

HP-IB
HP 8714B Address (Number) {ENTER)

PROG:STAT RUN

PROG:STAT CONT

PROG: EXEC

’STEP’

No SCPI Command

No SCPi Command

PROG

:DEL

PROG: MALL <size>

No SCP! Command

DISP
DISP
DISP

DISP:

SYST:
SYST:
SYST:
SYST:

:PROG
:PROG
:PROG

PROG

COMM:
COMM:
COMNM :
COMM:

OFF
FULL
UPP
LOW

GPIB:ADDR <num>!
GPIB:CONT OFF2
GPIB:CONT DN?
GPIB:ECHO <ON|OFF>

1 A five sacond delay is required bafore a command is sent to the new address.

2 For use with IBASIC runming on the analyzer’s internal controlles — this command cannat be executed from an external controtter. Usa *OPC? and wan for 8 reply

before sending ary OUTPUT 7xx commands from IBASIC

11-34

Menu Map with SCPl Commands

(SYSTEM OPTIONS) SCPl Commands (continued)

KEYSTROKES SCPi COMMARD

No SCP! Command
HCOP:DEV:MODE ISET; :HCOP;=WAI
HCOP: ABOR

SYST:DATE <year>,<month>,<day>!

SYST:DATE <year>,<month>,<day>!

SYST:DATE <year>,<month>,<day>!

SYST:TIME <hour>,<minute>,<second>!

SYST:TIME <hour>,<minute>, <second>!

SYST:TIME <hour>,<minute>,0!
Clock Format
YYYY=MM=DD~ HE:MM DISP:ANK:CLOC:DATE:FORM YMD
Y DISP:AKN:CLOC:DATE:FORM MDY
DISP:ANN:CLOC:DATE: FORM DMY
DISP:ANN:CLOC :DATE:MODE NUM
DISP:ANN:CLOC:DATE:MODE ALPE

DISP:ANN:CLOC:SEC <ON|OFF>

s (Number) (ENTER) SYST:BEEP:VOL <num>’

1 <year>,<month>, <day>,<hour> <minute > and <sccomd> are all <mum> parameters. Also, these keys do not generate keystroke recording BASIC
statemants.

2 Number is a fraction, for ssemple 0% would be oxpresssd as 0.90

11-35

Menu Map with SCPI Commands

(SYSTEM OPTIONS) SCP! Commands (centinued)

KEYSTROKES

SCPi COMMAZD

No SCPi Cammand

No SCP! Cammand

No SCP! Command

No SCP! Cammand

No SCPl Command

1 The Service menu Is described in the Service Guide.

11-36

12

SCPI Command Summary

SCPI Command Summary

This chapter contains all of the HP-IB commands recognized bv the analyzer
and a brief descripion. <num>, <char>, <string> ana <block> refer 1o

the parameter type expected by the instrument as part of the command.

All commands have both command and query forms unless specified as
command only or query only. Unless otherwise specified. add a “7” to create
a query from the command form. For example, the command to select the
log magnitude format for the data displayed is CALCulate[1|2] : FORMat
MLOGarithmic. To query which format is active the corresponding command
is CALCulate[1/2] :FORMat?. The response to the query is the short form
of the mnemonic for the active format, in this example MLOG.

The FORM column gives the parameter type returned by the instrument

in response to a query. NR1, NR2 and NR3 refer to the different types of
numeric data. CHAR (character data), STRING (string data) and BLOCK
(block data) are also used to describe response types. These parameter types
are described in the “Parameter Types” section of Chapter 10.

Some numeric parameters may be followed by an appropriate suffix.
Commands that accept a suffix also allow standard meiric multipliers to be
combined with the suffix. For example, commands that set a frequency will
accept HZ, KHZ, MHZ and GHZ. Commands that set a 1ime will accept S,
MS. US, NS, PS, F'S and AS. Note that case is ignored. The multiplier “M”
is interpreted as either milli or Mega, depending on context. If no suffix is
inciuded, the default units for the parameter are used.

ABORt

SUBSYSTEM COMMANDS FORM DESCRIPTION

ABORt

command only | Abort and reset the sweep i arogress.

12-2

SCPI Command Summary

CALCulate
SUBSYSTEM COMMANDS FORR: DESCRIPTION
CALCulate[1]2] :DATA?} gqusry only | Query the formatted data trace — functonally equivaient 1o the
BLOCK or NR32 | command TRAC? CH<1|2>FDATA.
CALCulate(1]|2] :FORMat <char> CHAR Select the displsy format for the measurement dete — choose
from
MLOGarithmic |MLINear | SWR|DBV3 | DBNVS)
DBUV3
or
£ PHASe|SMITh|POLar| GDELay | REAL
< N\vglue -1.75pc> | IMAGinary|MIMPedance.
&PCALCulate[112] :GDAPerture:APERture NR3 Set the group delay aperture as a ratio of desired aperture /
<num> messured frequency span.
6PCALCulate[1]2] :GDAPerture:SPAN <num> NR3 Specifies the group delay aperwre in Hertz.
CALCulate[1]2]:LIMit:DISPlay <ON| OFF>* NR1 Turn onfoff displey of limit lines.
CALCulate{112]:LIMit:MARKer:FLATness NR3 Set the maximum value for a fletess limit test.
:MAXimum <num>
CALCulate[1]|2):LIMit:MARKer:FLATness NR3 Set the minimum vaiue for a flatness marker iimit test.
:MINimum <num>
CALCulate[1]2]:LIMit:MARKer:FLATness NR1 Turn on/off flatness marker fimit test.
:STATe <ON|OFF>*
CALCulate[1|2]:LIMit:MARKer:STATistic NR3 Set the maximum value for a statistic mean imit test.
:MEAN:MAXimum <num>
CALCulate[1]2]:LIMit:MARKer:STATistic NR3 Set the minimum vaiue for a statistic mean limit test.
:MEAN :MINimum <num>
CALCulate[1{2]:LIMit :MARKer:STATistic NR1 Turn on/off statistic mean marker limit test.

:MEAN:STAte <ON|OFF>*

1 Refer to Chapter 6, “Trace Data Transfers,” and 10 the "ASCDATA" and “REALDATA" exampla programs in Chapter B for more information on this command.
2 The parameter type of the data is determined by the format selected — FORRMat REAL uses BLOCK data, FORMat ASCii uses NR3 data separated by commas.

3 Option 1EC {75 Q) only

4 Binary paremeters accept the values of 1 (oni and D (off} in addition to 88 and GFF.

&® indicates 1P 8712B/14B only

12-3

SCPI Command Summary

CALCulate (continued)

SUBSYSTERA COMMANDS FORM DESCRIPTION
CALCulate[1}2] :LIMit:MARKer:STATistic NR3 Set the maximum vaiue for & siatistc peak-to-peak limit test.
:PEAK:MAXimum <pum>
CALCulate(1]2] :LIHit:MARKer:STATistic NR3 Set the minimum value for & statistic peak-to-peak imit test.
:PEAK:MINimm <num>
CALCulate[1]2] :LIMit:MARKer:STATistic NR1 Turn on/off statistic peak-to-peak marker Wimit test.
:PEAK:STAte <ON|OFF>!

CALCulate[1/2]:LIMit:SEGMent [1}2} NR3 Set the Begin Limit for the spacrfizd limit segment.
..-12] :AMPLitude:S TARt <num>’
CALCulate[1|2]:LIMit:SEGMent[1]2] NR3 Set the End Limit for the speciec limit segment.

..-12] : AMPLitude:S TOP <num>?

CALCulate[1]|2] :LIMit:SEGMent : AOFF

command only

Turn off all limit segments for 3 given channel — deletes afl
segments in the channel’s limit “ebie

CALCulate[1[2]:LIMit:SEGMent [1[2] NR3 Set the Begin Frequency for the soeciied fimit segment.
..-12] :FREQuency:S TARt <num>’

CALCulate[1]/2]:LIMit:SEGMent[1]2] NR3 Set the End Frequency for the specified limit segment.
.--12] : FREQuency:S TOP <num>?2

CALCulate[1]2]:LIMit:SEGMent[1]2!} NR3 Set the Begin Power for the specified limit segment.
.--12] :POWer:STARt <num>

CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the End Power for the spectied fimit segment.
---12] : POWer :STOP <num>

CALCulate[1)2] :LIMit:SEGMent [112]| NR1 Turn onjoff the specified limit seymant — adds or deletes the
...12] :STATe <ON|QFF>! segment.

CALCulate[1]2] :LIMit:SEGMent[1]2] CHAR Set the limit type for the specrfiec segment, choose fram

---12] : TYPE <char>

LMAX |LMIN|PMAX |PMIN ‘Max Lire, Min Line, Mex
Point, Min Point) — sets all of the segment’s limit parameters
10 thair default values.

1 Binary parameters accept the values of 1 (on) and 0 {off} in addition to OM and OFF.
2 Numeric parameters may include an appropriate suffec; if no suffix is included, the default (HZ for fraquency or § far time) is assumed.

12-4

SCPI Command Summary

CALCulate (continued)

SUBSYSTEM COMMANDS FORR2 DESCRIPTION
CALCulate[1]2]:LIMit:STATe <ON|OFF>! NR1 Tumn onjoff the fimit test.
CALCulate[1{2]:MARKer:AOFF command only | Tum off ali markers for @ given channel — this hes the effect

of turning off marker functions snd tracking as wel.
CALCulate[1}2] :MARKer:BWIDth <num>Z NR3 Calculate the bandwidth of @ bandpass filter — num is the
target bandwidth (-3 for the 3 dB bandwidth).
CALCulate[1]|2] :MARKer:FUNCtion query only [Query the results of the active marker function — MAX and
:RESult? NR3[,NR3, MIN retumn the amplitude; TARG returns the frequency;
NR3,NR3] BWID rewrns handwidth, center frequency, Q and loss; STAT
returns the frequency spen, the mean and stendard deviation
ot the smplitude response, and the peak-to-pesk rippie; FLAT
returns the frequency span, gain, siope and fiatness; and
FSTAT returns the insertion loss and peak-to-peak ripple of
the passband of a filter, as well as the maximum signal
amplitude i the stopband. Refer to the "MARKERS® example
program in Chapter 8 for more information.
CALCulate[1|2]:MARKer:FUNCtion CHAR Select the active marker function — choose from
[:SELect] <char> OFF | MAXimum | MI¥izumi| TARGet | BWIDth|
NOTCh |MPEak |MNOTch{STATistics|
FLATness |FSTATistics.
CALCulate[1]2]:MARKer:FUNCtion NR1 Turn onjoff marker funcuon trecking.
:TRACking <ON|OFF>!
CALCulate[1]2]:MARKer[12[--8]:GDELay? guery only | Returns the group deiay value, in seconds, at the soecified

marker.

CALCulate[1]2]:MARKer[1[2].--8]
:MAXimum

command only

Set the specfied marker to the maximum vaiue on the trace.

CALCulate[1]2] :MARKer[1]2]--8]
:MAXimum:LEFT

command cnly

Moves the specified marker to the next local maximum to the
left.

CALCulate[1|2]:MARKer[1/2]--8]
:MAXimum:RIGHt

command only

Moves the specified marker to the next local maximum te the
right.

1 Binary parameters accept the values of 1 {onl and 8 loff} in addition to ON and OFF.
2 Numeric paramaters may include an appropriate suffe; if no suffix is inciuded, the defauht IHZ for frequency or § for time) is assumed.

12-5

SCPI Command Summary

CALCulate (continued)
SUBSYSTER! COMMANMDS FORRA DESCRIPTION
CALCulate[1]2]:MARKer({1|2}.--8] command only | Set the speciiied marker 1o tha mmimum value on the trace

:MINimum

:MAGNitude?

CALCulate[1|2] :MARKer{1(2}...8] command only | Moves the specified merker to the next locel mmimum to the
:NINimum: LEFT left.
CALCulate[1]2]:MARKer{1]2].--8] command only | Moves the specified marker to the next local mimimum to the
:MINimum:RIGHt right.
CALCulate[1)2] : MARKer:MODE <char> CHAR Turn onfoff dette marker state — choose ABSolute or
RELative.
CALCulate[1}2] :MARKer:NOTCh <num>! NR3 Calculate the notch width of a nctch filter — num s the
target notch width (-6 for the 6d8 bandwidth].
CALCulate[1}2] :MARKer({11}2]---8] NR3 Set the specified marker point.
: POINt?
CALCulate([1]2] :MARKer[112{---8]:X <aum> NR3 Set the specified marker frequency {or power i in power
sweepj
CALCulate[1]2] :MARKer:REFerence:X? query only | Query the fraguency of the reterence marker.
NR3
CALCulate[1]2] :MARKer:REFerence:Y? gquery only | Query the amplitude of the reference marker.
NR3
CALCulate[1]2] :MARKer[1]2]---8] NR1 Turn on/off the specfied marke:.
[:STATe] <ON|OFF>
CALCulate[1]2] :MARKer[1]2]---8] CHARNR3 | Perform a marker search for 2 target value — char 5 the
:TARGet <char>, <pum>? direction LEFT or RIGHt
SHCALCulate[1]2] :MARKer[1]2]---8]:Y guery only | Query the specified marker's inductsnce when i Smith chart
NR3 farmat.
:INDuctance ?
SHcaLCulate[1]2] :MARKer[1]2]---8]:Y query anly | Query the specified marker's magnitude when in polar format.
NR3

1 Numeric parameters may include an appropriate suffe; if no suffix 1s included the default (HZ for frequency or S for time) is assumed.
2 Rafer 1 "Displaying Msasurement Aesufts” in Chapter 7 of the User’s Guide for mare information on using this command.

12-6

< indicates HP 87128/14B only

SCPI Command Summary

CALCulste (continued)
SUBSYSTEM COMMANDS FORM DESCRIPTION

cCALCulate[1]2] :MARKer[1]2]--8]:Y query only | Qusry the specified marker's phase vaiue whan in poiar formet.
NR3

:PHASe?

&CALCulate[1/2] :MARKer[1]2}.--8]:Y guery only | Quary the specified marker's reactance valug when in Smith
NR3 chart formet.

:REACtance?

&BCALCulate[1]2] :MARKer([1/2]/--8]:Y query only | Query the specified marker’s resistance value when in Smith
NR3 chart format.

:RESistance 7

CALCulate[1]2] :MARKer(1]2]}.-8]:Y? query only | Query the specified marker amplitude.
NR3

CALCulate[1|2]) :MATH[:EXPRession] exPrl Selgct a trace math expression — choose messuremant trace

<expr>1 from (IMPL) for “data only” or

(IMPL/CH<1|2>SMEM) for "data / memory".

1 <expr> and EXPR represent expressions, a paremetes type that consists of mathematical expressions that yse charecisr parameters and are enclosed in parentheses.

CALibration
SUBSYSTEM COMMANDS FORRE DESCRIPFTION
CALibration:ZERO:AUTO <OK|OFF|ONCE>! NR1 Turn on/off the broadband detector autozeroing funcuon.

1 Binary parameters accept the values of 1 (on! and O (off} in addition 10 ON and OFF.

P indicates HP 8712B/14B anly

12-7

SCPl Command Summary

CONFigure
SUBSYSTER COMMANDS FOR DESCRIPTION
CONFigure <string> STRING Configure the anaiyzer 1o messure a specfic device tvpe and

parameter {the (BEGIN } functen) — cnoose from one of
the follawing strings

’AMPLifier:TRANsmission’
’AMPLifjier:REFLection’
>AMPLifier:POVWer’
’FILTer:TRAKsmission’
’FILTer:REFLection’
"BBANd:TRANsmission’
'BBANd:REFLection’
'"MIXer:CLOSs’
’MIXer:GDEL’
'MIXer:REFLection’
’CABLe:TRANsmission’
’CABLe:REFLection’
CABLe:FAULT’
>CABLe:SRL’

.

12-8

SCP! Command Summary

DIAGnrestic
SUBSYSTEM COMMANDS FORM DESCRIPTION
DIAGnostic:CCONstans:INSTalled? query only | Query if correction constents are instwlled in flash. Returns a 1
NR1 if true, and a O if feise.
DIAGnostic:CCORstants:LOAD commsnd only | losd defuit factory cslibration constents fom fioppy disk to
memory.
DIAGnostic:CCONstants:STORE:DISK command only | Store default factory calibration constants from memory to
floppy disk.
DIAGnostic:CCONstants:STORE:EEPRom command only | Store default factory calibration constents from memory to flash
EEPROM.
DIAGnostic:PORT:READ? query only | Reads the rear panel I/0 pors.
<po:r1:><1:egister>1 NR1, NR1
DIAGnostic:PORT:WRITE NR1, NR1, NR1 | Writes to the rear panel /O ports.
<port><register>
DIAGnostic:SNUMber <string>? guery only | Query the instrument’s serial number.
STRING
DIAGnostic:SPUR:METRod NR1 Select the spur avoid mode.

<NONE |DITHer | AVOid>

1 Refer to “Controlling Peripherats® in Chapter 7 of the User's Gude for more mformation an using this command.

12-9

SCPt Command Summary

Tahle 12-1. Writeahile Ports

Port Humber Ragister Descriptien
18 0 Outputs 8-bit date to the Cen1_00 through 07 lines of the Centronics port. Cent_D0 s the
least significant bit, Cent_D7 is the most signdicant bit. Checks Centronics status dines for:
QOut of Paper
Printer Not on Line
BUSY
ACKNOWLEDGE
15 1 Sets/clears the user bit according to the least significant bit of A A least significant bit equal
to 1 sets the user bit high. A least significant bit of O clears the user bit.
15 2 Sets/clears the limit pass/fail bit according to the least significant bit of A A least significant
bit equal to 1 sets the pass/ail bit high. A least significant b ¢i O clears the pass/fail bit.
15 3 Qutputs B-bit data to the Cent_00 through D7 lines of the Centranics port. Cent_DD s the
least significant bit, Cent_07 is the most significant bit. Does not check Centronics status
fines.
g 0 Outputs 8 byte to the serial port. The byte is output serislly according to the configuration

for the senal port.

NOTE

When using the WRITEIO(15,0) or WRITEIO(15,3) commanc, the Printer_Select Line 1
set High. However, when the instrument is doing hardcopy, the Printer_Selac- Line 15 set low Tne
Printer _Select fine mav or may not be used by individual printers Check ‘it vour srinter manuai.

12-10

SCP! Command Summary

Table 12-2. Readable Ports

Port Mumber Register Description
9 U Reads the serial port.
15 I Reads the 8-bit data port Cent_DD througn 07.
15 1 Reads the user bit.
19 2 Reads the limit test passieil bit.
15 10 Reads the B-bit staws port.
DO—Cent_sacknowledge
01—Cent_busy
02—Cent_out_of_paper
D3—Cent—on_line
DA—Cent._printer_arr

12-11

SCPt Command Summary

DISPiay
SUBSYSTERS COMMANDS FOR® DESCRIPTION
DISPlay:AKNotation:CHANnel[1|2] :USER NR1 Enables user-gefined channel arnotaton.
:STATe <OFF|0N>12
DISPlay:ANHotation:CHANnel(1|2] :USER STRING Specifies the string to be dispieyed m the channel annotaton
:LABel:DATA <s‘cring>2 area labove the graticuiel.
DISPlay:ANNotation:CLOCk:DATE CHAR Select the Year/Month/Day ordering of the date in the clock
:FORMat <char> displey — choase from YMD [MDY|DMY.
DISPlay:ANNotation:CLOCk:DATE:MODE CHAR Select the format for the date n -he ciock display — choose
<char> NUMeric or ALPHa.
DISPlay:ANNotation:CLOCk:MODE <char> CHAR Select how the clock will appeer :n the measurement dispiay
title area — choose from LINE1 | LINE2 | OFF.
DISPlay:ANNotation:CLOCk:SEConds NR1 Turn on/off display of seconds r e ciock display.
[:STATe] <OK|OFF>!
DISPlay:ANNotation:FREQuency[1/2] CHAR Set the frequency annotation or :re dispiay — choose SSTOP
: MODE <char> {start/stopi, CSPAN (center/span) or CW.
DISPlay:ANNotation:FREQuency(1!2] CHAR Set the resalution of display frequency values — choose from
:RESolution <char> MHZ |KHZ|HZ.
DISPlay:A¥Notation:FREQuency([1}2] NRY Enables user-defined frequency annotwuon.
:USER:STATe [OFF|0N]!-2
DISPlay:ANNotation:FREQuency([1]2] NR3 Specifies the start value for user-cefined frequency annataon
:USER:STARt <num>?
DISPlay:AKKNotation:FREQuency[1/2] NR3 Specifies the stop value for user 2:-ned frequency annotation.
:USER:STOP <num>’
DISPlay:AKNotation:FREQuency[1]2] STRING Specifies the suffix for user defirer frequency annotaton.
: USER:SUFFix:DATA <string>’
DISPlay:ANNotation:FREQuency[1/2] STRING A user-defined X-axis iabel.
:USER:LABel:DATA <string>
DISPlay:ANNotation:MARKer([1]2] NR1 Enable/disable the active marker anrotation for channels

[:STATe] <ON|OFF>!

1and 2.

1 Binary parameters accept the values of 1 (on) and O (off} in addition 10 ON and OFF.
2 Rafer to “Displaying measurement Resuits” in Chapter 7 of tha Usar’s Gusde for more information on using this command.

12-12

SCPI Commang Summary

DISPlay (continued)
SUBSYSTENM COMMANDS FORM DESCRIPTION
DISPlay:ANNotation:MESSage: AOFF command only | Turns off any currently showing message window — includes

message window, active entry and IBASIC window.

DISPlay: AIIotation:llESSnge:CLEa:l commsnd only | Removes 8 user-gefined pop-up message window.

DISPlay:ANNotation:MESSage:STATe NR1 Eneble/disable the message window — CAUTION: this

<0N | OFF>2 suppresses display of all massages {sven ERROR messages!.

DISPlay:ANNotation:MESSage:DATA STRING Displeys 8 user-defined message in the pop-up message window!

<strins>1 Opgtional argument specifies the timeout: choose from
NONE|SHORt |MEDium|LONG.

DISPlay:ANNotation:TITLe[1]2]:DATA STRING Enter & string for the specified title fine.

<string>1

DISPlay:ANNotation:TITLe[:STATe] NR1 Turn on/off display of the title and clack.

<ON | OFF>?

DISPlay:ANRotation:YAXis:MODE <char> CHAR Set mode for the Y-axss labels — choose RELative or
ABSolute

DISPiaizAﬂotation:YAXis[:STATe] NR1 Turn on/off Y-exis labeis.

<ON | OFF>2

DISPlay:FORMat <char> CHAR Select the format {full or split screen} for displaying twace data
— chaase SINGle {overiayl or ULOWex Ispltl.

DISPlay:MENU:KEY[1)21].--7] <st::ring>1 STRING Specifies the softkey menu labels from a remote controlier or
1BASIC

DISPlay:MENU[2] :KEY[1]2]-..7] <s1;1‘ing>1 STRING Specifies the softkey menu labels when using user-defined
BEGIN key. {For aption 1C2, IBASIC, onlyj

DISPlay:MENU:RECall:FAST[:STATe] NR1 Turn onfoff fast recall mode.

<ON | OFF>?

DISPlay:PROGram[:MODE] <char> CHAR Select the portion of the anelyzer's screen to be used as an HP)
Instrument BASIC dispiay — choose from
OFF | FULL | UPPer | LOWer.

DISPlay:WINDow([1(2!10] :GEOMetry query oniy | Query the absolute pixel coordinates of the lowar left corner of

:LLEFT? NR1,NR1 the selected display window.

1 Rafer to “Operator Interaction” in Chapter 7 of the Usars Guide for more information on using this command.
2 Binary paremeters accept the veluss of 1 lon) and 0 {off} in addition to @& and GFF.

12-13

SCP! Command Summary

DISPiay {continued)
SUBSYSTER COMMANDS FORRA DESCRIPTION
DISPlay:WINDow(1|2|10]}:GEOMetxy guery onty | Query the width and height {in nixeis) of the selected display

:SIZE? NR1,NR1 window.

DISPlay:WINDow([1|2|10] : GEOMetry query only | Query the absolute pixsi coordinates of the upper right comer
: URIGHT? NR1.NR1 of the selected display window.
DISPlay:WINDow:GRAPhics:BUFFer NR1 Turn on/off buffering of user grashics commands.

[:STATe] <ON|OFF>!

DISPlay:WINDow([1]2/10]:GRAPhics?
:CIRCle <num>

command only

Draw a circle of the specified Y-axs radius centered at the
current pen location — num s the diameter in plxe!s.3

DISPlay:WINDow[1/2/10]:GRAPhics? command only | Clear the user graphics and graphics buffer for the specified
:CLEar window.
DISPlay:WINDow[1|2/10]:GRAPhics? NR1 Set the color of the user graphis pen — choose from O for
: COLor <num> erase, 1 for bright, and 2 for aim
DISPlay:WIRDow(1/2(10] : GRAPhics? command anly | Draw & line fram the curramt pen position to the specified new
[:DRAW] <numi>,<oum2> pen position — numl and num2 are the new absolute X
and Y coordinates m pixels.”
DISPlay:WINDow[1!2!10]:GRAPhics? command ony {Draw a label with the lower 1e*1 corner at the current pen
:LABel <string> location.3
DISPlay:WINDow([1]2]10] :GRAPhics? CHAR Select the user graphics fabe! font — choose from
:LABel :FONT <char> SMAL1|HESMall|NORMal|
HNORmal | BOLD |HEBCLG | SLANt |HSLant.
DISPlay:WINDow[1]2]10] :GRAPhics? NR1,NR1 Move the pen to the speciiied new pen position — numi and
:MOVE <numi>,<num2> num?2 are the new absoiuz % and Y coordinates in plxels.3
DISPlay:WINDow([1]2]10] :GRAPhics? command only | Draw a rectangle of the speciied size with lower left corner ar
:RECTangle <numi>,<num2> the current pen position — numi and num?2 are the width
and haight in puers,3
DISPlay:WINDow[1|2]10] :GRAPhics? query only | Query whether & window 15 znabled for user graphics
:STATe? NR1 commangs.
DISPlay:WINDow[1]2] :TRACe: NR1 Turn on/off display graticule

GRATicule:GRID[:STATe] <ON|OFF>!

1 Binary parameters accept the values of 1 (on} and O (off} in addition to ON and OFF.

2 Rafer to Chapter 7, "Using Graphics,” for more information.

3 Reafer 10 Chapter 7, and to the example program ttled “GRAPHICS™ in Chapter 8 for mare wmformaticn.

12-14

SCPI Command Summary

DiSPlay (cantinued)

SUBSYSTEM COMMANDS FORM DESCRIPTION
DISPlay:WINDow[1(2]:TRACe([1]2] NR1 Turn on/off the displsy of trace and memory dats from the
[:STATe] <ON|OFF>! specified channel.
DISPlay:WINDow[1|2):TRACe:Y command only | Scate the msssurament deta for & best fit display.
[:SCALe] : AUTO ONCE
DISPlay:WINDow[1]2]:TRACe:Y NR3 Specify the height (4B or units per division) of each vertical
[:SCALe] :PDIVision <num>2 division of the specified channel.
DISPlay:WINDow[1!2]:TRACe:Y NR3 Spacify the vaiue for the Y-axis reference position for the
[:SCALe] :RLEVel <num>2 specified channel.
DISPlay:WINDow[1/2):TRACe:Y NR3 Specify the Y-axis reference position for the specified channel.
[:SCALe] :RPOSition <num>

1 Binary paramaters accept the values of 1 (on} and @ (off} in addition 1o ON and OFF.
2 Numeric parameters may inciude an appropriate suffec; if no suffix is included, the default (NZ for freguency or § for time) s assumed.

FORMat
T SUBSYSTEM COMMANDS FORRE DESCRIPTION
FORMat :BORDer <char> CHAR Specify the byte order used for HPIB data transfer — choose
’ NORMal or SWAPped lfor PC-competible systems].
FORMat [:DATA] <char>[,<num>] CHAR[NR1] | Specify the data format for use during data transfer — choose
from REAL,64|REAL, 32| INTeger,16| ASCii.

12-15

SCPI Command Summary

HCOPy

SUBSYSTEM COMBANDS

FORM

DESCRIPTION

HCOPy:ABORt

command anly

Aborts any hardcopy currently in nrogress.

HCOPy:DEVice[1]2]:COLor <ON|OFF>! NR Select monochrome OFF ar coior OF mode tor hardcopy
output — use device 1 for printers and 2 for piotters.

HCOPy:DEVice:LANGuage <char> CHAR Select the languege for hardcopy output — choose from
PCL|HPGL | EPSon | IBM] PCX?

HCOPy:DEVice:MODE <char> CHAR Select the graph and/or teblelsi to appear on a hardcopy plot
~ choose from
GMARker | GRAPh|ISETtings | MARKer |
TABLe.

HCOPy:DEVice:PORT <char> CHAR Select the communications port for hardcopy output — choose
from CERTronics|SERial |GPIB|MMEMory.

HCOPy:DEVice:RESolution <num> NR1 Set the printer resalution in milmeters.

HCOPy[:IMMediate]

command only

Inmiates @ hardcopy output fprint o- plot).

HCOPy:ITEM: ANNotation:STATe <ON| OFF>! NRY Turns on/off channel and frequency annotation as part of
hardcopy output.
HCOPy:ITEM[1!2] :FFEed:STATe <ON|OFF>! NR1 Turns anjoff an automatic form 'sec at the completon of
hardcopy output — use nem 1 ‘o printers and 2 for ploners.
HCOPy:ITEM:GRATicule:STATe <0ON | OFF>! NR1 Turns onfoff graticule as part of nardcopy output.
HCOPy:ITEM:MARKer:STATe <ON | OFF>! NR1 Turns anjoff marker symbols as var: of hardcopy oumut:
HCOPy:ITEM:TITLe:STATe <0IIIJFF>1 NR1 Turns on/off utie and clock lines as part of hardcopy cutput.
HCOPy:ITEM:TRACe:STATe <ON | OFF>! NR1 Turns on/off trace data as part ¢ n3rdcopy outnuL.
HCOPy:PAGE:MARGin:TOP <num> NR2 Sets the top margin (for printer nutout] in millimeters.
HCOPy:PAGE:MARGin:LEFT <num> NR2 Sets the left margin {for printer sutout} in milimeters.
HCOPy:PAGE:ORIentation <char> CHAR Sets printer putput page orientation — choose PORTrait or
LANDscape.
HCOPy:PAGE:WIDTh <num> NR2 Sets the print width {for printer sutout) in milimeters.

1 Binary parameters accept the values of 1 {on) and 0 {off) in addition 1o OM and OFF.

2 EPSon and IBM produce the same resuits.

12-16

SCPI Command Summary

IRiTiate
SUBSYSTER COMMANDS FOR® DESCRIPTION
INITiate[1]2] :CONTinuous <ON)OFF>! NR1 Set the trigger system to continuously Sweep of to stop
sweeping.
INITiate[1]2] [:IMMediate] command only | Initiete 8 new measuremant sweep.

1 Binary parameters accept the vatues of 1 {on} and 0 loff) in addition to G and OFF.

12-17

SCPI Command Summary

MMEMory
SUBSYSTE2: COMMANDS FORR DESCRIPTION
MMEMory:CDIRectory <string> STRING Change the current directory on a 00S formatted disk — new

dirsctory must be on the same mass storage device.

MMEMory:COPY <stringil>, <s1:ring:.>>1

command only

Copy a file — stringl is wne source file string2 s
the destnation file

MMEMory:DELete <string>’

command only

Oelgte a file — string i the fisname

MMEMory:INITialize
[<string>[,<char>{,<zum>]]1]

command anly

Formet 8 disk — string is the mass storage device MEM:
linternal memoryl, INT: (internal floppy disk drivel or EXT:.
Choose the disk formet char from DOS or LIF, and the
interleave factor num.

MMEMory:LOAD:STATe 1, <string>!?

command oniy

Recall an instrument state from mass storege — stringis
the filename.

MMEMory:MDIRectory <string>

commend only

Make a new directory on a OCS formatted disk.

MMEMory:MSIS <string>

STRING

Select @ mass storage device — chcese MEM: [internal
memory), INT : (internal floppy oisk drivej or EXT :.

MMEMory:MOVE <stringl>, <string2>!

command only

Move or rename a file — stringl s the source [or old)
filename and string2 is the destination lor newj filename.

MMEMory:RDIRectory <string>

command only

Delete a directory from a DOS fcrmatted disk.

MMEMory:STORe:STATe 1, <string>!'?

command only

Save an instrument state to mass storage — string s the
filename.

MMEMory:STORe:STATe:ISTate <OK | OFF>3 NR1 Turn on/off the instrument state — oart of the definition of a
saved file.

MMEMory:STORe:STATe:CORRection NR1 Turn onjoff the calibration — sar: of the defiminon of a saved

<ON | OFF>> file

MMEMory:STORe:STATe:TRACe <ON| OFF>3 NR1 Turn anjoff the data trace — part of the definition of a saved

file.

MMEMory:STORe:TRACe <char>,<string

S1.2

command only

Stores an ASCIl iist of trace and trequancy vaiues to 8 file —
char s the formatied date trace CH<1|{2>FDATA and
string s the filename.

1 Filenamas may include the mass storage device — MEM: (internal non-volatile memoryl, RAM: (internal voiatile memoryl, INT: finternal 1.57 disk drive) or EXT..

Wiidcards ? and * may be used.

2 Rafor to “Measuremant Setup and Contro!” in Chapter 7 of the lser’s Guide for more information on using this command.

3 Binary parameters accept the values of 1 ton} and @ {off) in addibon to DM and OFF.

12-18

SCPI Command Summary

MMEMory (coatinued)

SUBSYSTER COMMANDS FORM DESCRIPTION
MMEMory:TRANsfer :BDAT STRING, Copy & file to or from the anaiyzer's disk drive.3
<string>![, <block>]? BLOCK
MMEMory:TRANsfer[:HFS] STRING, Copy & file to or from the snalyzer's disk drive.
<string>! [, <block>)?

1 Filsnames may include the mass storage device — B3ERA: linternal non-volatile memory), RARA: (internal volatile memory), INT: (internal 3.5° disk drive) or EXT-.

Wildcards 7 and * may be used.
2 Refer to Chapter 8, “Example Programs” for more information on using this command.
3 Rater to the example programs PUTFILE and GETFILE in Chapter 8.

OUTPut
SUBSYSTEM COMMARNDS FORM DESCRIPTION
OUTPut [:STATe] <OK|OFF>! NR1 Turn on/aft RF power from the source.

1 Binary parameters accept the values of 1 {ont and O {off} in addition to ON and OFF.

POWer
SUBSYSTER COMMANDS FORM DESCRIPTION
POWer{1]2] :MODE <char> CHAR Specify sithar frequency sweep (FIXed| or power swesp
(SWEepl.

12-19

SCP! Command Summary

PROGram
SUBSYSTER; COMMANDS FORM DESCRIPTION
PROGram! :CATalog? query onty | List the names of the defined (BASIC programs — response s
STRING “PROG" [if a program s prasenti or the null strng (**'*].
PROGram’ [:SELected]:DEFine <block> BOCK | Downioad an IBASIC program from an externai controler.

PROGram! [:SELected]?:DELete: ALL

command only

Delete aii IBASIC programs from the pragram buffer —
equivaient to an HP BASIC SCRATCH A command.

PROGram![:SELected]?:DELete

command only

Delete the active IBASIC prograrr — equivalent 10 an HP BASIC

[:SELected] SCRATCH A command.
PROGraml[:SELected]zzEXECute <string> command anly) Execute an IBASIC command
PROGram! [:SELected]?:MALLocate <num> NR1 Allocate memory space for IBASIC programs — choose from a
real number betwsen 2048 and 4000000 bytes.
PROGram! [:SELected]?:NAME ’PROG’ STRING Select the IBASIC program in the program buffer 1o be active.
PROGram! [:SELected]?:NUMBer BLOCK o NR3® | Load a new vaiue for & numanc varable string n the
<string>, <data>’ active IBASIC program — num 13 the new value
PROGram! [:S_ELected]2:STATe <char> CHAR Select the state of the actve IBASIC progrem — choose from
STOP | PAUSe|
RUN {CONTinue.
PROGram! [:SELected]2:STRing STRING load & new value for a string variadle stringl in the
<stringl>,<string2> sctive IBASIC program — string?2 is the new vaiue.
PROGram! [:SELected]?:WAIT NR1 Wait until the IBASIC prograr cumpietes.

1 Commands in the PROGram subsystem are only avaiable when the HP tnstrument BASIC (IBASIC! aption s nstalied (sprion 1070 “vev allow you to generate and

control BASIC programs in the analyzer.

2 Commands grouped under the SELected mnemanic in the PROGram subsystem operate on the active program buffer.
3 The parameter type of the data i1s deterrmined by the tormat selected — FORMat REAL uses BLOCK data, FDRMat ASCii use: VP data separated by commas.

12-20

SCPl Command Summary

SENSe[1]2]

SUBSYSTEM COMMANDS FORM DESCRIPTION
SENSe[1}2]:AVERage:CLEar command only | Re-start the trace averaging function.
SENSe[1]2]:AVERage:COUNt <num> NR1 Specify @ count or waighting factor for the averaged

measursment data.
SENSe[1|2]:AVERage[:STATel <ON | OFF>! NR1 Turn on/off the trace averaging function.
SENSe(1]2]:BWIDth[:RESolution] <num> NR2 Specify the bandwidth of the IF recaiver (fine, narrow, medium
HZ or wide} to be used in the measurement — choose 15 (fine}

250 (narrow) 3700 (mediumi or 6500 (widel.
SENSe[1]2]:CORRection:CAPacitance NR3 Select cannector compensating capacitance value. [For use with

:CONNector <num>

structural return loss measurements on analyzars with Option
100 only.}

SENSe[1]2] :CORRection:COLLect:ABORt

command only

Aborts the calibration that is currently in progress.

SENSe[1]2]:CORRection:COLLect
[:ACQuire] <char>

command only

Measurs a cafibration standard — seisct from
STAKdard1|STANdard2!|STANdard3.

SENSe[1]2]:CORRection:COLLect
:CKIT[:SELect]

STRING

Select Cal Kit

Choose from one of the ioliowing strings:
"COAX,TMM,TYPE-N,50, FEMALE’
‘COAX,7MM,TYPE-N,50, MALE'
"COAX,3.5,APC-3.5 50 IMPLIED
‘USER,IMPLIED,IMPLIED, IMPLIED, IMPLIED'
'COAX, MM, TYPE-£75,IMPLIED'2
"COAX,TMM,TYPE-N, 75, FEMALE’
‘COAX,7MM,TYPE-N,75, MALE

SENSe[1]2]:CORRection:COLLect
:ISTate[:AUTO] <OK|OFF>!

NR1

Select the instrument state for caiibration — choose Full Band
|ON| or User Defined IOFF).

SENSe[1]2] :CORRection:CQOLLect
:METHod <char>

command only

Select the type of calibration — choose from
TRAN1|TRAN2|REFL3 | NONE.

SENSe[1]2]:CORRection:COLLect:SAVE

command only

Complete and save current calibration.

SENSe[112] :CORRection:CSET
[:SELect] DEFault

commend only

Restore the “factory” default calibration for the current
measurement and channal.

SENSe[1]2]:CORRection:CSET
[:SELect]?

query only
CHAR

Query the current calibration type — returns DEF {factory
default), FULL ifull band) or USER |[user defined).

1 Binary paramaters accept the vatues of 1 fon) and O (off} in addition to ON and OFF.

2 implementsd in fmware ravisions B.03.01 and above

12-21

SCPI Command Summary

SENSe|1]2] (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION

®SENSe(112] : CORRection:EDELay: TIME NR3 Specifies the electrical defay in seconds.

<1m_m>1

SBSENSe{112] : CORRection:EXTension NR1 Enables port extensions.

[:STATe] <ON|DFF>2

$DSENSe[1]2] :CORRection:EXTension NR3 Spacifies the port extension at the reflection port, in seconds.

:REFLection[:TIME] <num>!

SPSENSe[1]2) :CORRection:EXTension NR3 Specifies the port extension at the rransmission port, in seconds.

:TRANsmission[:T IME] <num>!

SPSENSe[112] : CORRection: IMPedance NR3 Specifies the reference impedance fo- the Smith chart display.
The defeult is the anaiyzer's system impedance.

: INPut:MAGNitude <num>'

SERSe[1!2] :CORRection:LENGth:CDAX NR2 Specifies the length of cable to o= -aiibrated, in feet or meters.

<num> (For use with fauit location measurements on analyzers with
Option 100 anly.

SENSe[1]2] :CORRection:LENGth NR2 Spacifies the length of an interface connector, in mm or inches.

:CONNector <num> {For use with structural return 128s ™easure;ments on anaiyzers
with Option 100 only;

SENSe[112] :CORRection:L0OSS:COAX <num> NR2 Specifies the loss of a cable uncer test, in dB/100 fr. {For use
with fault location measurements or anaiyzers with Option 160
oniy.]

EBSENSe[112] :CORRection:OFFSet:PHASe NR3 Specifies the phase offset.

1 Numeric parameters may include an appropriate suffec; f no suffix is included, the defautt (HZ for frequency or § for time) is assumed

2 Binary parameters accept the vaives of 1 lon} and @ {off} in addition to ON and OFF.

12-22

& indicates HP 8712B/14B only

SCPI Command Summary

SENSe(1]2] (continued)

SUBSYSTEM CORIMANDS FORR2 DESCRIPTION
SENSe[1!2]:CORRection:MODel:CONNector command only | Measure the cable connector and determine the optimum vsiues
[:IMMediate] for connector iength and connecter capscnence. {For use with
structuraf return ioss measurements on anatyzers with Option
100 oniy.i

SERSe[1!2]:CORRection:PEAK: COAX NR1 Turns muiti-peak correction on or off. [For use with fault

[:STATe] <ON|OFF>! location measurements on analyzers with Option 100 only.)

GPSENSe[1]2] :CORRection:RVELocity: COAX NR3 Specifies the velocity factor to be used when displaying the
distance for electrical length and port extensions. 1.0 = the

2 speed of light.

<num>

SENSe[1/2]:CORRection:RVELocity command only | Measure the cabie and determine the optimum values for cable

[:IMMediate] loss and velocity factor. (For use with fault location
msasurements on analyzers with Option 100 only.}

SENSe[112]:CORRection:THReshold NR2 Selects multi-peak thrashoid vaive, in dB. {For use with fault

:COAX <num> location meesurements on anaiyzers with Option 100 only.)

SENSe[112]:COUPle <char> CHAR Turn on/oft the slternate sweep mode — choose ALL [coupled
sweep} or NONE |alternate sweep).

SENSe[1]|2] :DETector[:FUNCtion] <char> CHAR Specify which detection mode is used 10 make the measurement
— choose BBANG [broadband} or NBANQ {narrowband).

SENSe[12]:DISTance:STARt <num> NR3 Set the start distance for a fault location measurement, in fest
or meters. (For use with fault location megsurements on
analyzers with Option 100 oniy!

SENSe[1|2]:DISTance:STOP <num> NR3 Set the stop distance for a fault location measurement, in feet
or meters. {For use with fault location measurements on
analyzers with Optien 100 only)

SENSe[1(2]:DISTance:UNITs <char> CHAR Specifies distance units. Choese METers or FEET. {For use
with fault location measurements on analyzers with Option 100
only.|

SENSe[1|2]:FREQuency:CENTer <num>2 NR3 Set the center frequency of the RF source.

SENSe[1|2] :FREQuency:MODE <char> CHAR Set the fault location measuremant to CENTer |bandpass) or

LOWPass.[For use with feult location measursments on
analyzers with Qption 100 only,)

1 Binary parameters accapt the values of 1 (oni and 0 {off) in addition to GM and OFF.
2 Numeric parameters may inciude sn appropriate suffec if no suffix is included the defeult (N2 for frequency or 8 for time) is assumed.

12-23

SCP! Command Summary

SENSal1/|2] (continued)

SUBSYSTERM COMMANDS FORRE DESCRIPTION

SENSe(1]2] :FREQuency:SPAN <num>? NR3 Set the frequency spen of the RF source.

SENSe({112] :FREQuency:SPAN NR3 Set the maximum frequency sten of the RF source for

SMAXimum <num>! bandpass fault location measuramants. {For use with fauit
location measurements on anatyzers with Option 100 eniy)

SENSe[1|2] :FREQuency:STARt <aum>! NR3 Set the stert frequancy of the R* seurce.

SENSe[1!2] :FREQuency:STOP <num>! NR3 Set the stop frequency of the AF sourca

SERSe[1|2] :FREQuency:ZSTOp <num>! NR3 Set the 7 cutoff frequency for canle impedance caiculations.
(For use with structural return loss measursments on analyzars
with Option 100 oniy.}

SENSe[1]2] :FUNCtion? query only | Qusery the messurement functiun — returns ane of the

STRING JXFR:POW . . .’ or 'XFR:POW:RAT ... ’

strings described below.

SENSe[1!2] :FUNCtion:SRL:IMPedance NR2 Set the cable /mpedance. {For use with structural return lass

<num> messurements on analyzers with Option 100 only.

SENSe[1]/2] :FUNCtion:SRL:MODE <char> CHAR Set the auto z function to AUTO or MANual. {For use with

structural return loss measurements on analyzers with Option
100 only,)

SENSe[1]2] :FURCtion:SRL:SCAN
[:IMMediate]

command only

Start a cable scan. {For use with structural rewrn loss
measurements on analyzers with Jption 100 only.)

SENSel1]2]:FUNCtion ’XFRequency
:POWer <num>’

cammand only

Specify that the receiver will meesure the power intc 8 the
single channel — choose from cnannels O (Rl, 1 {Al, 2 (B),
11 (Ext Xl or 12 (Ext Y.

SENSe(1/2] :FUNCtion ’XFRequency
:POWer:RATio <pum>,<num>’

command oniy

Specify that the receiver wil measure @ ratic of the power into
the two selected channels — choose from ratios 1,0 (AR,
2,01BMR|, 12,0 {Ext Y/RI, 11,12 [Ext XExt ¥), 12,11
(Ext Y/Ext X), or 12,11 [AM Celayl.

SENSe[1]2] :ROSCillator:SOURce <char> CHAR Specify the source of the reference oscillator — seiect
INTernal or EXTernal
SENSe[1/2]:STATe <ON|OFF>2 NR1 Turn onfoff the specified channel.

1 Numeric paramaters may inciude an appropriate suffi; f no suffix is included, the default (KZ for frequency ar § for ume) 1s assumec.

2 Binary parameters accegt the values of 1 (on) and O (off) in addition 10 ON and OFF.

12-24

SCP! Command Summary

SENSe|1|2] {continued) (continuad)

SUBSYSTER COMMANDS

FORM DESCRIPTION

SENSe[1!2] :SWEep:POINts <num> NR1 Set the number of date points for the measurament — choose
from 315(111211511101(201{4011801!1601.

SENSe{1]2] : SWRep: TIME <num>! NR3 Set the sweep time.

SENSe(1]2] : SWEep: TIME: AUTO NR1 Turn on/off the eutomatic sweep time function.

<O | OFF | ONCE>?

SERSe:SWEep:TRIGger:SOURce <char> CHAR Set the trigger source for esch point in @ sweep — choase
IMMediate or EXTernal lused in conjunctien with
TRIGger[:SEQuence] : SOURce.l.

SENSe:WINDow[:TYPE] <char> CHAR Set the window selection for fault locstion measurements.

Choose from RECTangulax (Minimum), HAMMing
{Medium), or KBESs el [Maximum). {For use with fault
location measurements on analyzers with Option 100 oniy.|

1 Numeric parameters may include an appropriate suffi; if no suffix is included, the default {KZ for frequency or § for time) is assumed.

2 Binary parameters accept the values of 1 (on) and O (off! in addition to ON and OFF.

SOURce
SUBSYSTEM COMMANDS FORM DESCRIPTION

SOURce[1(2] :POWer{:LEVel] NR3 Set the RF power sutput from the source.

(:IMMediate] [:AMPLitude] <num>!

SOURce[1{2] :POWer:RANGe <char> CHAR Specifies the power sweep range Choose from ATTen0
|ATTen10|ATTen20({ATTen30!ATTen40
|ATTen50 | ATTen60.

SOURce[112] : POWer:STARt <num> NR3 Sets the power sweep start power.

SOURce[1]2] :POWer :STOP <num> NR3 Sets the power sweep stop power.

1 Numeric paramsters may include an appropriate suff; if no suffix is included, the dafautt (HZ for frequency or S for time) is assumed.

12-25

SCPt Command Summary

STATus
SUBSYSTER! COMMAKRDS FORM DESCRIPTION
STATus:DEVice:CORDition? query only | Read and clear the Device Status condition regmerl.
NR1
STATus:DEVice:ENABle <num> NR1 Set and query bits in the Dewvice Status enable regmar.2
STATus:DEVice[:EVERt]? query only | Read and clear the Device Status event ragister.t
NR1
STATus:DEVice:NTRansition <num> NR1 Set and query bits in the [ewvice Status negative transition
ragister.2
STATus:DEVice:PTRansition <num> NR1 Set and query bits in the Jevice Stetus positive transition
mgismr.2
STATus:0PERation:AVERaging guery only | Read the Averaging stetus condiuon ragisxer.l
: CONDition? NR1
STATus:0PERation:AVERaging:ENABle NR1 Set and query bits in the Averaging staws enable reg:suer‘2
<num>
STATus: DPERation:AVERaging[:EVElt] ? query only Read and clear the Averaging status event regtsnar.l
NR1
STATus:0OPERation:AVERaging NR1 Set and guery bits in the Avaraging status negative transition
:NTRansition <num> rsg‘rster.2
STATus:O0PERation:AVERaging NR1 Set and query bits in the Aversying status positive transitian
:PTRansition <num> register‘2
STATus:0PERation:CORDition? query only | Read the Operational Status cordition regusner‘1
NR1
STATus:0PERation:ENABle <num> NR1 Set and query bits in the Uperatona) Staws enable ragxster.2
STATus:0PERation[:EVENt]? query only | Read and clear the Operatonal Status event regrsrer.l
NR1
STATus:0PERation:MEASuring query only | Read the Measuring status condition ragnster.l
:CONDition? NR1
STATus:0PERation:MEASuring:ENABle NR1 Set and query bits in the Measuring status enable regmer?

<num>

1 Returns the sum of the decimal weights (2% where n 15 the bit number] of alt bits currently set. For mare informarion on using the status regmters refer to Chapter S,

“Using Status fegisters.”
2 mam s the sum of the decime! waghts of al bits to be set.

12-26

SCPI Command Summary

STATus (centinued)
SUBSYSTEM COMMANDS FORM DESCRIPTION
STATus:0PERation:MEASuring[:EVENt]? guery only | Read and clear the Measuring stetus event nagismr.1
NR1
STATus:OPERation:MEASuring NR1 Set and query bits in the Measunng status negative trensition
:NTRansition <num> register.
STATus:0OPERation:MEASuring NR1 Set and query bits in the Measuring status positive transition
:PTRansition <num> register.2
STATus :0PERation:NTRansition <num> NR1 Set snd query bits in the Operational Status negative transition
ragis:mr.2
- STATus:0PERation:PTRansition <pnum> NR1 Set and query bits in the Operational Status positive transition
registar.2
STATus:PRESet command only | Set bits in most enable and transition registers to their default
state.
STATus:QUEStionable:CONDition? query onty | Read and clear the Questionable Status condition regnster.l
NR1
STATus:QUEStionable:ENABle <num> NR1 Set and query bits in the Questionable Status enabie ragismr.2
STATus:QUEStionable[:EVENt]? guery only | Read and clear the Quesnonable Status event regrster.l
NR1
STATus:QUEStionable:LIMit guery only | Read and clear the Limit Fail condition regrster‘1
:CONDition? NR1
STATus:QUEStionable:LIMit:ENABle <num> NR1 Set and guery bits in the Limit Fail enable regrster.2
STATus:QUEStionable:LIMit [:EVENt]? query only | Read and clear the Limit Fail event register.l
NR1
STATus:QUEStionable:LIMit NR1 Set and query bits in the Limit Fail negative transition register.z
:NTRansition <num>
STATus:QUEStionable:LIMit NR1 Set and query bits in the Limit Fail positive transition register.2
:PTRansition <num>
STATus:QUEStionable:NTRansition <num> NR1 Set and query bits in the Questionable Status negative
transition ragister.2

s 1 Returns the sum of the dacimal weights {2 where n is the bit number) of afl bits currently set. For mare infarmation on using the status registers refer to Chapter 5,
“Using Status Registers.”
2 wezm 8 the sum of the decimet waightz of sll bits 1o be set.

12-27

SCPH Command Summary

STATus (continued)

SUBSYSTERM COMMANDS

FORR

DESCRIPTION

STATus:QUEStionable:PTRansition <num>

NR1

Set snd query bits in the Quesnonable Status positive transition
regtsuar.1

1 ez 18 the sum of the decimal waights of alt bits 1o be set.

12-28

SCPI Command Summary

SYSTem
SUBSYSTEM COMMANDS FORR DESCRIPTION
SYStem:BEEPer[: IMMediate] NR3, NR3, NR3 | instructs the snafyzer to beep. Arguments are irequency (Hz),
[<treq>[,<dunr>[,<vol>]]] 1 duration iseconds), and volume (0 to 1.
SYSTem:BEEPer:VOLume <num> NR2 Set the volume of the beeper — num wm a number between
O for 0% end 1 for 100%.
SYSTem:COMKunicate:GPIB:CONTroller NR1 Makes the HP 8711 the system controller.
[:STATe] <ON|OFF>23
SYSTem:COMMunicate:GPIB:ECHO <0IH3F1">2 NR1 Turn onfoft HP-IB mnemonic echo.
SYSTem:COMMunicate:GPIB:HCOPy NR1 Set the address of an HP-IB printer or plotter for hardcopy
:ADDRess <num> output — nmum must be an integer between 0 and 30.
SYSTem:COMMunicate:GPIB:MMEMory NR1 Set the HP-IB eddress of an external disk drive — num must
:ADDRess <num> be an integer between 0 and 30.
SYSTem:COMMunicate:GPIB:MMEMory NR1 Set the unit number of an external disk drive.
:UNIT <num>
SYSTem: COMHMunicate:GPIB:MMENory NR1 Set the volume number of an externsl disk drive.
:VOLume <num>
SYSTem:COMMunicate:GPIB[:SELF] NR1 Set the HP 8711's HP-IB address — num must be an integer
:ADDRess <num>* between 0 and 30.
SYSTem:COMMunicate:SERial: TRANsmit NR1 Set the baud rate for hardcopy output 10 @ device on the serial
:BAUD <num> pert — choose from
1200240014800 9600 19200.
SYSTem:COMMunicate:SERial: TRANsmit CHAR Set the handshake for communication to a hardcopy device an
:HANDshake <char> the serial port — choose XON or DTR.
SYSTem: COMMunicate:TTL:USER:FEED:KEY NR1 Enable/disable softkey auto-step function to work with fast

[:STATe] <ON|OFF>2

recall {all models} or with user begin function foption 1C2 only).

1 <freq>, <dur>, and <wel> are optional <msm> parameters.

2 Binary parameters accept the vaiues of 1 (on} and 0 {off} in addition to ON and OFF.
3 For use with IBASIC — this command cannot be executed from an external controtier.
4 A delay of 5 seconds s regquired befors a command is sent to the new address.

12-29

SCPI Command Summary

SYSTem [continusd)

DESCRIPTION

SUBSYSTERS COMMAMNDS FoRR
SYSTem:DATE <numi>,<num2>,<num3> NR1,NR1, NR1 | Set the yesr (num1], month (num2) and dey (mum3| of the
real time clack.
SYSTem: ERRor?! query only | Query the error queue — returns the error number and
NR1,STRING | message
SYSTem:KEY:MASK? query only } Query the mask [shift, ctrl, alll associated with @ keypress on
an externai keyboard.

NR1

SYSTem:KEY:QUEue:CLEar

command only

Clears the key queue.

SYSTem:KEY:QUEue:COUNt? guery only | Query the number of key codes in the gueue.
NR1

SYSTem:KEY:QUEue: MAXimum? query only | Query the size of the key queue ithe maximum number of key
NR1 codes it can hold).

SYSTem:KEY:QUEue[:STATe] <ON|QFF>2 NR1 Turn on/off the key queue

SYSTem:KEY:TYPE? query only | Query the type of key that was pressed — returns NONE,
CHAR RPG, KEY lfront panel keyi or ASC |external keyboard).

SYSTem:KEY:USER command only | Sets the User Request bit of the Standard Event Status Register.

SYSTem:EEY[:VALue]l ? query only | Query the key code value for e iast key pressed — RPG
NR1 type returns the knob caunt, posinve for clockwise rotation,

KEY type returns the front pane keycou‘e,3 and ASC type
returns the ASCIl code number

SYSTem:PRESet

command only

Perform a system preset — tnis iz the same as the front panel

(PRESET) key.

SYSTem:SET <block>

commangd oniy

Send a learn string !obtained usin *LRN?! 1o the analyzer —
this command is inciuded in the zarn strng.

SYSTem:SET:LRE? [<USER>]* BLOCK Query or set the instrument state

SYSTem:SET:LRNLong? [<USER>] 4 8lOCK Query or set the instrument state, data, and cafibration. Similer
to save/recall.

SYSTem:TIME <numi>, <aum2>,<num3> NR1,NR1, NR1 | Set the hour (num1), minute ‘num2) and second (num3) of

the real time tlock.

1 For more information on errors, refer to Chapter 14, “SCPI Error Messages.”

2 Binary parameters accept the values of 1 (on) and O (oft) in addition 1o ON and OFF.

3 A list of the analyzer's frant panel keycades is provided m Chapter 8.

4 Rafer 10 “Measurement Setup and Control” in Chapter 7 of the Usar'’s Guids for mere information on using this command.

12-30

SCP! Command Summary

SYSTem (continued) (centinued)

SUBSYSTEN COMMANDS FORM DESCRIPTICN
SYSTem:VERSion? guary only | Query the SCPI version of the snelyzer. See »IDN? to guery
NR2 the firmware rewsion.
TEST
SUBSYSTERM COMMANDS FORER DESCRIPTION
TEST:RESult? query only | Query the result of the selected adjustmant or self-test — the
CHAR response will be NULL |PASS |FAIL.
TEST:SELect <num> NR1 Select the adjustment or self-test to execute.
TEST:STATe <char> CHAR Select the state of the active adjustment or self-test — choose
from RUN | CONTinue { STOP for the command. Query
retuns NULL | RUK | PAUS | DONE.
TEST:VALue <num> NR1 Set or guery a value for an adjustment or sah-test.
TRACe
SUBSYSTEM COMMANDS FORM DESCRIPTION
TRACe[:DATA]? <char> query only | Query trace data — choose from

BLOCK or NR3!

CH<1|2>FDATA formatted data,

CH<1|2>FMEM formatted memaory,

CH<1|2>SDATA unformatted data,

CH<1|2>SMEM unformatted memory,
CH<1]2><A{BI|R>FWD raw oata. or
CH<1]2>SCORR<1]2}3> correction data. Nete: See
Chapter B, “Trace Dats Transfers,” for data array details.

TRACe[:DATA] <char>,<data>

command only

Input trace dete — choose from the above fist of errays. The
date can be either BIOCK or NR3 type,l See Chepter B for
mare information.

TRACe[:DATA] <chari>,<char2>

command only

Move data from one internal array to another — chari s
the target arrsy [CH<1 | 2>SMEM) while char?2 is the
source array (CH<1)2>SDATA). Note that the source and
18rget arreys must be from the same measurement channsi.

1 The paramster type of the deta 15 determined by the format selected — FORSAat REAL usss BLOCK data, FOR%at ASCii uses NR3 data saparsied by commas.

12-31

SCP! Command Summary

TRIGger
SUBSYSTER COMMANDS FORM DESCRIPTION
TRIGger [:SEQuence] : SOURce <char> CHAR Set the source for the sweep tngger signal — choose
IMMediate or EXTernal iused in conuncuion with
| SENSe:SWEep:TRIGger :SOURce|. s

12-32

13

SCPI Conformance
Information

SCPI Conformance Information

The HP 8711B/12B/13B/14B RF Network Analyzers conjorm to the
1994.0 version of SCPL.

13-2

SCPI Standard Commands

The analyzer implements the following IEEE 488.2 standard commands:

*CLS
*ESE
*ESE?
*ESR?
*IDN?
*LRN?
*QPC
*0PC?
*0PT?
*PCB
*PSC
*RST
*SRE
*SRE?
*STB?
*TRG
*TST?
*WAI

The analyzer implements the following SCPI 1994.0 standard commands:
ABORt

CALCulate(1]2] :DATA?
SBCALCulatel1]2] :GDAPerture: APERture
SPCALCulate[112] :GDAPerture:SPAN
CALCulate([1]2] : FORMat

CALCulate{1(2] :FORMat?
CALCulate[1{2]:LIMit:STATe
CALCulate[112] :LIMit:STATe?
CALCulate[1]2] :MATH[:EXPRession]
CALCulate{1!2] :MATH[:EXPRession]?

CALibration:ZERD:AUTD
CALibration:ZERD:AUTC?

DISPlay:MENU:KEY[1]2] ... 7]
DISPlay:MENU[1|2]:KEY[1]2| ... 717

& indicates HP 8712B/14B anly 18-3

SCPI Conformance Infarmation

SCPI Standard

DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISFPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:

Commands

WINDow[1]2]10]

WINDow([112110]:
:GEOMetry:URIGHT?
:GRAPhics:CLEar
:GRAPhics:COLor
WINDow{1{2[10]:
:GRAPhics [:DRAW]
:GRAPhics:LABel
:GRAPhics :MOVE
:GRAPhics:MOVE?
:GRAPhics:STATe?

WINDow[1]2110]
WINDow(112110]
WINDow(1{2110]

WINDow(1]2]10]
WINDow(1(2/10]
WINDow(1]2110]
WINDow[1{2]10]

:GEOMetry:LLEFT?

GEOMetry:SIZE?

GRAPhics:COLor?

DISPlay:WINDow[1{2]10]
DISPlay:WINDow[1{2]:TRACe
DISPlay:WINDow[12]:TRACe
DISPlay:WINDow[1]|2]:TRACe
DISPlay:WINDow[1|2] :TRACe
DISPlay:WINDow[1!2]:TRACe
DISPlay:WINDow[1]2]:TRACe
DISPlay:WINDow[1|2]:TRACe
DISPlay:WINDow[1|2]:TRACe
DISPlay:WINDow[1|2]:TRACe
DISPlay:WINDow[1]2]:TRACe
DISPlay:WINDow([1]2]:TRACe

FORMat : BORDer
FORMat : BORDer?
FORMat [:DATA]
FORMat [:DATA]?

INITiate[1]2] :CONTinuous
INITiate[1]2] :CONTinuous?
INITiate[1]2] [:IMMediate]

MMEMory:CDIRectory
MMEMory:CDIRectory?
MMEMory :COPY
MMEMory:DELete
MMEMory:INITialize
MMEMory:LOAD:STATe
MMEMory :MOVE
MMEMory :MSIS
MMEMory:MSIS?
MMEMory:STORe:STATe

:GRATicule:GRID[:STATe]
:GRATicule:GRID[:STATe]?
(112] [:STATe]
[112][:STATe]"?
:Y[:SCALe] : AUTO
:Y[:SCALe] :PDIVision
:Y[:SCALe] :PDIVision?
:Y[:SCALe] :RLEVel
:Y[:SCALe] :RLEVel”
:Y[:SCALe] :RPDSition
:Y[:SCALe] :RP0Sition?

13-4

SCPI Confarmance Information
SCPI Standard Commands

MMEMory:STORe:TRACe
MMEMory : TRANsfer:BDAT
MMEMory: TRANsfer [:HFS]

OUTPut [:STATe]
OUTPut[:STATe]?

PROGram:CATalog?

PROGram[:SELected]
PROGram/[:SELected]
PROGram[:SELected]
PROGram[:SELected]
PROGram(:SELected]
PROGram{:SELected]
PROGram[:SELected]
PROGram[:SELected]
PROGram[:SELected]
PROGram[:SELected]
PROGram[:SELected]
PROGram({:SELected]
PROGram(:SELected]
PROGram[:SELected]
PROGram(:SELected]
PROGram[:SELected]
PROGram[:SELected]

SENSe[112]
SENSe[1]2]

:AVERage:
:AVERage:

:DEFine
:DEFine?
:DELete:ALL
:DELete[:SELected]
:EXECute
:MALLocate
:MALLocate?
:NAME
:NAME?
:NUMBer
:NUMBer?
:STATe
:STATe?
:STRing
:STRing?
‘WAIT
WAIT?

COUNt
COUNt?

SENSe(1]2]
SENSe[1}12]
SENSe[1]2]
SENSe[1]2]
SENSe[112]
SENSe[11]2]
SENSe[1]2]
SENSe(112]
SENSe[1]12]

:AVERage [:STATe]
:AVERage[:STATe]?
:BWIDth[:RESolution]
:BWIDth[:RESelution]?
:CORRection:COLLect{:ACQuire]
:CORRection:COLLect :METHod

:CORRection
:CORRection
:CORRection

:COLLect:SAVE
:CSET[:SELect]
:CSET[:SELect]?

SPSENSe[1/2] :CORRection:EDELay: TIME

SPSENSel1{2] :CORRection: IMPedance : INPut : MAGNitude
SBSENSe[112] : CORRection:0FFSet:PHASe

PSENSe[1]|2] :CORRection:RVELocity:COAX

SENSe([1{2] :CORRection[:STATe]

B indicates HP 8712B/148 only 13-5

SCPt Contormance informatian
SCPI Standard Commands

SENSe[112]

SENSe[1]2]:
SENSe[1]2]:
SENSe[1]2]:
:FREQuency :SPAN
:FREQuency :SPAN?
:FREQuency:STARt

SENSe[1]2]
SENSe([1]2]
SENSe[1}2]

SENSe[112]:
:FREQuency : STOP
:FREQuency :STOP?
:FUNCtion
:FUNCtion?

SENSe[1]2]
SENSe[112]
SENSe[1/2]
SENSe[11}2]

:CORRection[:STATel?

DETector:SHAPe
FREQuency :CENTer
FREQuency:CENTer?

FREQuency:STARt?

SENSe:R0SCillator:SOURce
SENSe:R0SCillator:SOURce?

SENSe[112]:
:SWEep :POINts?
:SWEep : TIME
:SWEep:TIME?
:SWEep: TIME : AUTC

SENSe[1]2]
SENSe{112]
SENSe[1]2]
SENSe[1]2]

SENSe[112]:

SWEep:POINts

SWEep: TIME: AUTO?

S0URce[112] :POWer[:LEVel] [: IMMediate] [:AMPLitude]
SOURce[1]|2] :POWer[:LEVel] [:IMMediate] [:AMPL:tude]?
SOURce{112] :POWer:RANGe

SOURce[112] :POWer:STARt

SOURce[1}2] :POWer:STOP

STATus : OPERation:CONDition?
STATus:0PERation:ENABle
STATus:0PERation:ENABle?
STATus:0PERation[:EVENt]?
STATus :0PERation:NTRansition
STATus:0PERation:NTRansition?
STATus:0PERation:PTRansition
STATus : OPERation:PTRansition?
STATus :PRESet

STATus :QUEStionable:CONDition?
STATus :QUEStionable:ENABle
STATus :QUEStionable:ENABle?
STATus : QUEStionable[:EVENt]?
STATus:QUEStionable:NTRansition
STATus :QUEStionable:NTRansition?

13-6

SCPI Conformance Information
SCPI Standard Commands

STATus:QUEStionable:PTRansition
STATus:QUEStionable:PTRansition?

SYSTem:BEEPer [: IMMediate]?
SYSTem:BEEPer : VOLume

SYSTem:BEEPer: VOLume?
SYSTem:COMMunicate:GPIB[:SELF] : ADDRess
SYSTem:COMMunicate:GPIB[:SELF] : ADDRess?
SYSTem:COMMunicate:SERial:TRANsmit :BAUD
SYSTem:COMMunicate:SERial : TRANsmit : BAUD?
SYSTem:DATE

SYSTem:DATE?

SYSTem:ERRor?

SYSTem:KEY[:VALue]?

SYSTem:PRESet

SYSTem:SET

SYSTem:SET:LRN?

SYSTem:TIME

SYSTem:TIME?

SYSTem:VERSion?

TRACe[:DATA]
TRACe[:DATA]?

TRIGger[:SEQuence] : SOURce
TRIGger[:SEQuence] : SOURce?

13-7

Instrument Specific Commands -

The following are instrument specific commands impiemented by the
HP 8711B/12B/13B/14B RF Network Analyzers which are not part of the
present SCPI 1992.0 definition.

CALCulate[1{2] :LIMit:DISPlay

CALCulate[1]2] :LIMit:DISPlay?

CALCulate[112] :LIMit:MARKer:FLATness :MAXimum
CALCulate[1]2] :LIMit:MARKer:FLATness:MINimum
CALCulate[112] :LIMit :MARKer:FLATness[:STATe]
CALCulate[112]:LIMit:MARKer:STATistic:MEAN:MAXimum
CALCulate[112] :LIMit :MARKer:STATistic:MEAN:MINimum
CALCulate[1{2] :LIMit:MARKer:STATistic:MEAN[:STATe]
CALCulate[112] :LIMit:MARKer:STATistic:PEAK:MAXimum
CALCulate[1]2] :LIMit :MARKer:STATistic:PEAK :MINimum
CALCulate[1]2] :LIMit:MARKer:STATistic:PEAK[:STATe]

CALCulate[112]:LIMit:SEGMent[1]2] ... 12] :AMPLitude:STARt
CALCulate(112] :LIMit:SEGMent {112} ... 12]:AMPLitude:STARt?
CALCulate[1§2] :LIMit:SEGMent[112] ... 12]:AMPLitude:STOP
CALCulate[112] :LIMit:SEGMent[1(2] ... 12]:AMPLitude:STOP?
CALCulate[112] :LIMit :SEGMent : AOFF

CALCulate{1(2] :LIMit:SEGMent[1}2] ... 127 :FREQuency:STARt
CALCulate[1{2] :LIMit:SEGMent[112| .. 12]:FREQuency:STARt?
CALCulate[112]:LIMit:SEGMent{1]2] ... 12]:FREQuency:STOP
CALCulate[112] :LIMit:SEGMent[1]2] ... 12] :FREQuency:STOP?
CALCulate[112]:LIMit:SEGMent[1!2| ... 12]:POWer:STOP
CALCulate[1!2]:LIMit:SEGMent[112] ... 12]:POWer:STOP?
CALCulate[112] :LIMit:SEGMent[1]2] ... 12]:STATe
CALCulate[112] :LIMit:SEGMent[112] ... 12]:STATe?
CALCulate[1{2] :LIMit:SEGMent[1]2] ... 12]:TYPE
CALCulate[112] :LIMit:SEGMent[1|2] ... 12]:TYPE?

CALCulate[112] :MARKer :AOFF
CALCulate[112] :MARKer:BWIDth
CALCulate[112] :MARKer :BWIDth?
CALCulate[1{2] :MARKer :FUNCtion:RESult?
CALCulate[1]2] :MARKer:FUNCtion[:SELect]
CALCulate[1]2] :MARKer:FUNCtion[:SELect]?
CALCulate[1]2] :MARKer:FUNCtion:TRACking
CALCulate[112] :MARKer:FUNCtion: TRACking?

13-8

PCALCulate[1]
CALCulate([1]2]
CALCulate[11]2]
CALCulate[1]2]
CALCulate(1]2]
CALCulate[1}2]
CALCulate(1]2]
CALCulate[1}2]
CALCulate(1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[112]
CALCulate[112]
CALCulate[112]
CALCulate{1(2]
CALCulate[112]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[112]

SCP! Conformance information
Instrument Specific Commands

2] :MARKer(1]|2| ... 8] :GDELay?
:MARKer[1]2] ... 8] :MAXimum
:MARKer{[1]2| ... 8] :MAXimum:LEFT
:MARKer([1]2] ... 8] :MAXimum:RIGHt
:MARKer([112] ... 8] :MINimum
:MARKer{1]2f ... 8] :MINimumm:LEFT
:MARKer(1]2| ... 8] :MINimum:RIGHt
:MARKer : MODE

:MARKer :MODE?

:MARKer :NOTCh

:MARKer[1(2] ... 8]:POINt
:MARKer[1]2} ... 8] :POINt?
:MARKer :REFerence:X?

:MARKer :REFerence:Y?
:MARKer([112] ... 8} [:STATe]
:MARKer[112) ... 8] [:STATel?
:MARKer({1l2{ ... 8] :TARGet
:MARKer[1{2} ... 8] :TARGet?
:MARKer[112] ... 8]:X
:MARKer[1|2} ... 8]:X7?
:MARKer([1]2] ... 8] :X:ABS
:MARKer[1]2] ... 8]:Y?
:MARKer[1]2] ... 8]:Y:INDuctance?
:MARKerf[112] 8) :Y:MAGNitude?

o

% CALCulate[12] :MARKer[1{2] ... 8] :Y:PHASe?

“BCALCulate[12] :MARKer[{1!2| ... 8]:Y:REACtance?
SBCALCulate[1{2]:MARKer{1)2} ... 8]:Y:RESistance?
CONFigure
CONFigure?

DIAGnostic:CCONstants:INSTalled?

DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:

DIAGnostic

CCONstants:LOAD

CCONstants:STORe:DISK

CCONstants :STORe:EEPRom

DITHer
DITHer?
SNUMber
SNUMber?
SPUR:AVDid
SPUR:AV0id?

13-9

SCP| Conformance Information

Instrument Spe

DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:

DISPlay:
DISPlay:
DISPlay
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:
DISPlay:

cific Commands

ANNotation:
ANNotation:
ANNotation:
ANNotation:
:CLOCk:DATE:MODE

ANNotation

ANNotation:
:CLOCk : MODE
:CLOCk : MODE?

ANNotation
ANNotation

ANNotation:
ANNotation:
ANNotation:
:FREQuency[1]2] :MODE?

:FREQuency:RESolution
:FREQuency:RESolution?
:FREQuency[1/2] :USER:LABel [: DATA]
:FREQuency[1]2] :USER:STARt

ANNotation

ANNotation
ANNotation

:ANNotation

ANNotation

ANNotation:
ANNotation:
ANNotation:
:MARKer [1|2] [:STATe]
:MARKer [1|2] [:STATe]?
:MESSage:ADFF
:MESSage:CLEar
:MESSage[:DATA]?
:MESSage:STATe
:MESSage:STATe?
:TITLe[1]2] :DATA

ANNotation
ANNotation
ANNotation
ANNotation
ANNotation
ANNotation
ANNotation
ANNotation

ANNotation:
:TITLe{:STATe]
:TITLe[:STATe]?
:YAXis:MODE
:YAXis :MODE?
:YAXis[:STATe]

ANNotation
ANNotation
ANNotation
ANNotation

:ANNotation
ANNotation:

FORMat
FORMat?

CHANnel([1|2] :USER:LABel[:DATA]
CHANnel([112] :USER[:STATe]
CLOCk:DATE:FORHKat
CLDCk:DATE:FORMat?

CLOCk : DATE:MODE?

CLOCk:SEConds [:STATe]
CLOCk:SEConds [:STATe]?
FREQuency[1]2] :MODE

FREQuency[1}2] :USER[:ST4Te]
FREQuency[1]2] :USER:STOP
FREQuency{1]2] :USER:SUFFIX

TITLe(112] :DATA?

YAXis[:STATe]?

MENU:RECall:FAST[:STATe] * DISPlay:PROGram[:HODE]
PROGram[:MODE] ?

WINDow:GRAPhics:BUFFer[:STATe]

WINDow:GRAPhics :BUFFer[:STATe]?

13-10

SCPI Canformance infarmation
Instrument Specific Commands

DISPlay:WINDow([1}2|10] :GRAPhics:CIRCle
DISPlay:WINDow[1|2}10] :GRAPhics:LABel:FONT
DISPlay:WINDow[1]2{10] :GRAPhics:LABel:FONT?
DISPlay:WINDow[1]2]10] :GRAPhics:RECTangle

HCOPy:ABORt
HCOPy:DEVice{1}2]:COLor
HCOPy :DEVice[1]2]:COLor?
HCOPy:DEVice:LANGuage
HCOPy:DEVice:LANGuage?
HCOPy:DEVice[1{2] : LANGuage
HCOPy:DEVice:MODE
HCDPy:DEVice:MODE?
HCOPy:DEVice:PORT
HCOPy:DEVice:PORT?
HCOPy:DEVice:RESolution
HCOPy:DEVice:RESolution?
HCOPy[:IMMediate]
HCOPy:ITEM: ANNotation:STATe
HCOPy:ITEM:ANNotation:STATe?
HCOPy:ITEM[1]2] :FFEed:STATe
HCOPy:ITEM[1{2] :FFEed:STATe?
HCOPy:ITEM:GRATicule:STATe
HCOPy:ITEM:GRATicule:STATe?
HCOPy: ITEM:MARKer:STATe
HCOPy:ITEM:MARKer:STATe?
HCOPy:ITEM:TITLe:STATe
HCOPy:ITEM:TITLe:STATe?
HCOPy:ITEM:TRACe:STATe
HCOPy:ITEM:TRACe:STATe?
HCOPy :PAGE:MARGin:LEFT
HCOPy :PAGE:MARGin:LEFT?
HCOPy:PAGE:MARGin:TOP

HCOPy :PAGE:MARGin:TOP?
HCOPy :PAGE:ORIentation
HCOPy:PAGE:ORIentation?
HCOPy:PAGE:WIDTh
HCOPy:PAGE:WIDTh?

INPut:GAIN:AUTO
INPut:GAIN:SETTing

13-11

SCPI Confarmance information
Instrument Specific Commands

MMEMory:MDIRectory
MMEMory:RDIRectory
MMEMory:STORe:STATe:CORRection
MMEMory:STORe:STATe:CORRection?
MMEMory :STORe:STATe:ISTate
MMEMory:STORe:STATe:ISTate?
MMEMory :STORe:STATe:TRACe
MMEMory :STORe:STATe:TRACe?
MMEMory : TRANsfer :BDAT
MMEMory : TRANsfer [:HFS]

POWer\[1]2]

SENSe[1]2]:
SENSe[1]2]:
SENSe[112]:
SENSe[1]2]:
SENSe[112]:
SENSe[112]:
SENSe[1]2]:
SENSe[1]2]:

:MODE

AVERage:CLEar

CORRection:
CORRection:
CORRection:
CORRection:
CORRection
CORRection:
CORRection:

CAPacitance:CONNectcr (Option 100 only)
CAPacitance:CONNector? (Option 100 only)
COLLect:ABORt

COLLect:CKIT[:SELect]

:COLLect:CKIT[:SELect]?

COLLect:ISTate[:AUTD]
COLLect:ISTatel[:AUTD]?

BSENSe[1(2] :CORRection:EXTension[:STATe]
DSENSe[112] :CORRection:EXTension:REFLection(: TIME]
SPSENSe[1]2] :CORRection:EXTension:TRANsmission[:TIME]

SENSe([1]2]
SENSe[1]2]
SENSe{112]
SENSe[1]2]
SENSe[1]2]
SENSe[112]
SENSe{1]2]
only)

SENSe[1]2]
SENSe[112]
SENSe[1]2]
SENSe[11]2]
SENSe[112]

:CORRection:
:CORRection:
:CORRection:
:CORRection:
:CORRection:
:CORRection:
:CORRection:

:CORRection:
:CORRection:
:CORRection:
:CORRection:
:CORRection:

SENSe:CQUPle
SENSe:C0OUPle?
SENSe[1]|2] :DETector[:FUNCtion]
SENSe[1]2] :DETector[:FUNCtion]?

LENGth:CDAX (Option 100 only)
LENGth:C0AX? (Option 100 only)
LENGth:CONNector (Option 100 onty)
LENGth:CONNector? (Option 100 oniy)
LOSS: COAX (Option 100 only)

LOSS:COAX? (Option 10 ondy)
MODel:CONNector[: IMMediate] (Option 100

PEAK:COAX (Option 100 only)
PEAK:COAX? (Option 100 only)
RVELocity[:IMMediate] (Option 100 only)
THReshold:COAX (Option 100 only)
THReshold:COAX? (Option 100 only)

13-12

&P indicates HP 8712B/148 anly

SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSel
SENSe[
SENSe:
SENSe:
SENSe:
SENSe:

STATus

STATus:

STATus
STATus

STATus:

STATus

STATus:

STATus
STATus
STATus

STATus:

STATus
STATus
STATus
STATus
STATus

STATus:

SCPI Conformance Infarmation
{nstrument Spacific Commands

DISTance:STARt (Option 100 only)
DISTance:STARt? (Option 100 only)
DISTance:STOP (Option 100 only)
DISTance:STOP? (Option 100 only)
DISTance:UNITs (Option 100 only)
DISTancae:UNITs? (Option 100 only)
FREQuency : MODE (Option 100 only)
FREQuency : MODE? (Option 100 only)
FREQuency:SPAN:MAXimum? (Option 100 only)
FREQuency : SPAN : MAXimum (Option 100 only)
FREQuency: ZSTop (Option 100 only)
FREQuency:2STop? (Option 100 only)
FUNCtion:SRL:IMPedance (Option 100 only)
FUNCtion:SRL:IMPedance? (Option 100 only)
FUNCtion:SRL:MODE (Option 100 only)
FUNCtion:SRL:MODE? (Option 100 only)
FUNCtion:SRL:SCAN[:IMMediate] (Option 100 only)
112] :STATe

1]2] :STATe?

SWEep:TRI1Gger:S0URce
SWEep:TRIGger : SOURce?

WINDow[:TYPE] (Option 100 only)
WINDow[:TYPE]? (Option 100 only)

:DEVice:CONDition?

DEVice:ENABle

:DEVice:ENABle?

:DEVice[:EVENt]?
DEVice:NTRansition
:DEVice:NTRansition?
DEVice:PTRansition
:DEVice:PTRansition?
:0PERation:AVERaging:CONDition?
:0OPERation:AVERaging:ENABle
OPERation:AVERaging:ENABle?
:0PERation:AVERaging[:EVENt]?
:0PERation:AVERaging :NTRansition
:0PERation:AVERaging :NTRansition?
:0PERation:AVERaging :PTRansition
:0PERation:AVERaging:PTRansition?
OPERation:MEASuring:CONDition?

13-13

SCPI Conformance Infarmation

{nstrument Specific Commands

STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:

SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:

SYSTem

SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:

SYSTem
SYSTem

COMMunicate

COMMunicate

COMMunicate

COMMunicate
COMMunicate
:KEY : MASK?

KEY:TYPE?
:KEY:USER
:SET:LRNLong

COMMunicate:
COMMunicate:
COMMunicate:
COMMunicate:
COMMunicate:
:GPIB:MMEMory:ADDRess
COMMunicate:
COMMunicate:
COMMunicate:
COMMunicate:
:GPIB:MMEMory:VOLume?
COMMunicate:
COMMunicate:
:TTL:USER:FEED:KEY[:STATe]

:TTL:USER:FEED :KEY[:STAT=2:7?

OPERation:MEASuring:ENABle
OPERation:MEASuring:ENABle?
OPERation:MEASuring[:EVENt]?
OPERation:MEASuring:NTRansition
OPERation:MEASuring:NTRansition?
OPERation:MEASuring:PTRansition
OPERation:MEASuring:PTRansition?
QUEStionable:LIMit:CONDition?
QUEStionable:LIMit:ENABle
QUEStionable:LIMit:ENABlae?
QUEStionable:LIMit [:EVENt]?
QUEStionable:LIMit:NTRansition
QUEStionable:LIMit:NTRansition?
QUEStionable:LIMit:PTRansition
QUEStionable:LIMit:PTRansition?

:GPIB:CONTroller[:STATe]

GPIB:CONTroller[:STATe]”
GPIB:ECHO

GPIB:ECHO?
GPIB:HCOPy:ADDRess
GPIB:HCOPy:ADDRess?

GPIB:MMEMory:ADDRess?
GPIB:MMEMory:UNIT
GPIB:MMEMory:UNIT?
GPIB:MMEMory:VOLume

SERial :TRANsmit:HANDshake
SERial :TRANsmit:HANDshake?

KEY :QUEue:CLEar
KEY : QUEue:COUNt?
KEY:QUEue:MAXimum?
KEY:QUEue[:STATe]
KEY:QUEue[:STATe]?

13-14

SCPI Conformance Infermation

TEST:RESult?
TEST:SELect
TEST:SELect?
TEST:STATe
TEST:STATe?
TEST:VALue
TEST:VALue?

13-15

SCPI Canformance Information

14

- SCPI Error Messages

SCPI Error Messages

This chapter contains the same error message informarion that can be found
in the SCPI 1994 Volume 2: Command Reference. There are four sections in
this chapter:

e Command Errors

s Execution Errors

e Device-Specific Errors

* Query Errors

NOTE

Your anafyzer does nat use all of the error messages listed in this chapter.

14-2

Command Errors

An error/event number in the range —199 to — 100 indicates that an

[EEE 488.2 syntax error has been detected by the instrument’s parser. The
occurrence of any error in this class shall cause the command error bit (bit 5)
in the event status register (TEEFE 488.2, section 11.5.1) to be set. One of the
following events has occurred:

e An IEEE 488.2 syntax error has been detected by the parser. That is, a
controller-to-device message was received which is in violation of the
IEEE 488.2 standard. Possible violations include a data element which
violates the device listening formats or whose type is unacceptable to the
device.

e An unrecognized header was received. Unrecognized headers include
incorrect device-specific headers and incorrect or unimplemented
IEEE 488.2 common commands.

e A Group Execute Trigger (GET) was entered into the input buffer inside of
an IEEE 488.2 program message.

Events that generate command errors shall not generate execution errors,
device-specific errors, or query errors; see the other error definitions in this

chapter.

14-3

SCP! Error Messages
Cammand Errars

Table 14-1. SCPl Command Errors

Error Number Ervor Description

—100 Command error — This is the generic synax error for dewices that cannot detsct more specific errors. This code
indicates onty that & Command Error hes accurred.

101 invalid chetecier — A synisctic element contsins a character which is invalid for thet type; for example, & header
containing sn ampersand, SETUP&. This error might be used in piece of errors —~114, —121, —141, and perhaps
some others.

-102 Syntax error — An unrecognized command or data type was encountered; for exampie, 8 stnng was received when
the device does not accept strings.

—103 invalid sepsrator — The parser was expecting a separator and ancountered an illega: character; for exampie, the
semicolon was omitted after a program message unit, #* EMC 1:CB1:VOLTS 5.

—104 Data type error — The parser recognized a deta element different than one allowsd: for example, numenic or string
dets was expected but biock date was encountered.

—105 GET not allowed — A Group Execute Trigger was received within a program message.

—108 Parameter not allowad — Mare parameters were received than expected for the header; for example, the *EMC
commen command only eccepts one parameter, so receiving *EMC- O, 1 is not aflowed.

—108 Missing parameter — Fewer parameters were received than required for the header; for example, the *EMC
commen commend requires one parameter, so receiving *EMC is not aflowed.

-110 Command header error — An error was detected in the header. This error message should be used when the
device cannot detect the more specrfic errors described for errars — 117 through -~ "19.

—-m Header separator error — A character which is not a legal header separator was 2ncountered while parsing the
header; for exampie, no white space foliowed the header, thus *GMC''MACRE" = an error.

-112 Program mnemanic too long — The header contains more that twelve characters

—113 Undefined heacer — Tne neager 15 syntacucally correct, but it 18 undefined for tnis soecic dewice; for exampie,
*XYZ 15 not defined for any device.

-114 Header suffix out of range — The value of a numeric suffix attached 1o a program mnemanic makes the header
invalid.

—120 Numaeric data error — This error, as well as errors — 121 through — 128, are generated when parsing a dats
element which appears to be numeric, including the nondecimal numeric types. This particuler error message should
be used if the device cannot detsct a mere specific error.

121 invalid cheracter in number — An nvelid character for the deta type being parsec was encountered; for exampie, an
aipha in 8 decimal numeric or 8 “3” in octal data.

-123 Exponent too large — The magnitude of the exponent was larger than 32000.

14-4

SCP! Error Messages
Command Errors

Table 14-1. SCP| Command Errors {cantinued)

Erver Hember Error Description

—124 Too meny digits — The mentisse of a decimal numeric date element containes more than 255 digits excluding
leading zeros.

-8 Numerc dste not-aliowed — A lsgal numeric etz slsment was received, but the-devics does not accept one
this position for the header.

-130 Suffix error — This error, as well as errars —131 through — 139, are generated when parsing 8 suffix. This
particular error message should be used if the device cannot detect a more specific error.

—131 Invalid suffix — The suffix does not follow the corract syntax, or the suffix is ineppropriate for this device.

—-134 Suffix too long — The suffix contained more than 12 charactars.

—138 Suffix not allowed — A suffix wes encountered after a numeric element which does not aliow suffixes.

. =4 Character data error — This errar, es well as errors — 141 through — 149, are generated when parsing a character

dsta element. This particuiar errar message should be used if the device cannot detect a more specific error.

—14 invalid character date — Either the character data element contains an invalid character or the partcular element
received is not valid for the headar.

—144 Character dats too long — The character data element contains more then twelve characters.

—~148 Character date not sllowed — A legal character date element was encountered where prohibited by the device.

—150 String data error — This error, as well as errors — 151 through — 159, are generated when parsing a string date
element. This particular error message shouid be used if the device cannot detect a mors specific errar.

—151 Invalid string data — A string date element was expected, but was invalid for some reason. For example, an END
message was received before the terminal quote character.

—158 String data not ellowed — A string date element was encountered but was not allowed by the device at this point
in parsing.

—160 Block data error — This error, as well as arrors — 161 through — 169, are generated when parsing a block dats
element. This particular error message should be used if the device cannot detect a more specific error.

—161 invalid block data — A block data element was expected, but was invalid for some reason. For exsmple, an END
message was raceived before the length was satisfied.

— 168 Block data not ellowed — A lege! block dats element was encountersd but was not allowed by the device at this
point in persing.

170 Expression error — This arror, as well as errors —171 through — 178, are genaerated when parsing an expression

data element. This particular errar message should be used if the device cannot detect & more specific error.

14-5

SCP! Error Messages
Command Errars

Table 14-1. SCPl Command Errors {continued)

Error Mumber Error Description

-1 Invaiid expression — The expression dats element was invelid (for example, unmatched narentheses or an illegal
charactar).

—178 Bxpression data not ellowed — A legal exprassion date wes encountered but was not allowed by the device at this
pomt in parsing.

—180 Macro ermor — This arror, as well s errors — 181 through — 189, are generated when defining or executing a
macro. This particular error message should be used if the device cannot detect a more specific error.

—181 invelid outside macro definition — Indicates that 8 macro parametar placehalder {$<Znumber) wes ancountered
outside of 8 macro definition.

—183 Invelid inside macro definition — Indicates that the program message unit sequence, sent with 8 *DDT or *DMC
command, is syntactically invaiid.

—184 Macro parameter error — Indicates that & command inside the macro definition had the wrang number or type of

parameters.

14-6

Execution Errors

An error/event number in the range —299 to —200 indicates that an error has
been detected by the instrument’s execution control block. The occurrence of
any error in this class shall cause the execution error bit (bit 4) inthe event
status register to be set. One of the following events has occurred:

e A program data element following a header was evaluated by the device
as outside of its legal input range or is otherwise inconsistent with the
device’s capabilities.

o A valid program message could not be properly executed due to some
‘“ device condition.

Execution errors shall be reported by the device after rounding and
expression evaluation operations have taken place. Rounding a numeric data
element, for example, shall not be reported as an execution error. Events that
generate execution errors shall not generate Command Errors, device-specific
errors, or Query Errors; see the other error definitions in this section.

14-7

SCP! Error Messages
Exscution Errors

Table 14-2. SCPI Execution Errors

Error Number Erver Description

—200 Exscution error — This is the generic syniax error for devices that cannot gatect more specific errors. This cooe
indicates onfy that an Execunion Error has occurmed.

-m invaéd while m local — Indicates that a command 1 not exscutable whila the device is in local due to a<hard locai
controf; for example, 8 device with 8 rotary switch recaives 8 message which wouid cniange the switches state, but
the dewice is in local so the message can not be exscuted.

—202 Setungs lost due to rtt — Indicates that & satting associated with a hard local control was lost when the device
changed to LOCS from REMS or to (WLS from RWLS.

—203 Command protected — Indicates thet a iegal password-protected program command or guery couid not be executed
because the command was disabled.

-210 Tnigger error

- Trigger ignored — Indicates that a8 GET, *TRG, or triggering signal wes recaived and recognized by the device but
was ignored hecause of device uming considerations; for example, the device was not reedy to respond.

-212 Arm ignored — indicates that an arming signal was received and recognized by the dewice but was ignored.

-213 init ignored — Indicates that a reguest for 8 messurament initiation was ignored as another meesurement wes
already In progress.

-214 Trigger geadiock — Indicates that the trigger source for the inination of a measuremest s set to GET and
subsequent measurement query is received. The measurement cannot be started un:l a3 GET is received, but the
GET would cause an INTERRUPTED error.

- 215 Arm deadiock — Indicates that the arm source for the iniuation of a measuremen: s et to GET and subseguent
measurament guery (s received. The measurement cannot be started untl 8 GET - rocewved, but the GET would
ceuse an INTERRUPTED error.

-220 Parameter error — indicates thai @ program gate element refated error occurred. s error message snould be
used when the dewice cannot detect the more specific errors — 221 through —224

-2 Settings confiict — Indicates that & legei program dats element was parsed but cou:d 10t pe exscuted due to the
current dewice State.

-2 Data out of range — Indicates that a legal program dats elemsnt was parsed but couid not be executed because
the interpretad value was outside the iegal range as defined by the device.

-223 Too much data — indicates that 8 legal program data element of block, expression, o7 string type was received
that contsined more data than the device could handle due t¢ memory or related device-spectfic requiremants.

—224 Mlegal paremeter vaiue — Used whare an exact velue, from a list of possible values, was expected.

1 A OTO device akemys igneres GET and treats *TRG as a Command Error.

14-8

SCPI Error Messages
Execution Errors

Table 14-2. SCP{ Execution Errars (continzed)

Erver Bumber Erver Descriptien
-2 Out of memory — The device has insufficient memory to perform the requestsd oparation.
-2% 7 Lists not same length — Attempted to use LIST structure having individuel LIST's of unequal lengths.
—230 Deta corrupt or stale — Possibly invalid date; new reeding started but not compieted since Ia;:au:ass.
-231 Data questiongble — Indicates thet measurement sccurecy i Suspect.
-232 Invalid format — Indicates that a legal progrem data elsment was parsed but could not be executadrbacause the

date format or structure is ineppropriate, such as when loading memory tsbles or when sending 8 SYSTem: SET
parameter from en unknown instrument.

e =233 Invalid version — Indicates that a Iegal progrem data slement was parsed but could not be executed becsuse the
version of the data is incorrect to the device. Thig particular error should be used when file or block dete formats
are racognized by the instrumaent but cannot be exacuted for ressons of version incompatibility. For example, an
unsupported file version, or an unsupported instrumant version.

—240 Hardwaere error — Indicates thet & legal program command or query could not be executed because of a hardware
probiem in the device. Definition of what constitutes & hardware probiem is compistely device-specific This error

" massage should be used when the device cannot getect the more specific errors described for errors —241 through
—249.

B | Hardware missing — Indicates that a legal program command or query could not be executed because of missing
device hardware; for exemple, an option was not instafled. DOefinition of what constiwtes missing hardware s
completely device-specific.

-0 Mass storege error — Indicates that 8 mass storage error occurred. This error message should be used when the
device cannot detect the more specific errors described for errors —251 through —258.

~251 Missing mass storage — Indicates that a legal program cammand or query cauld not be executed because of
missing mass storage; for exampie, an ootion that was not installed. Definition of what constitutes missing mass
storage Is davice-specriic.

—282 Missing media — Indicates that a legal program commend or query could not be executed because of a missing
medig; for example, no disk. The definition of what constitutes missing media is device-specific.

-253 Corrupt media — Indicates that & legal program command or query couid not be executed because of corrupt media
for example, bad disk or wrong format. The definition of what constitutes corrupt media is device-specific.

—254 Media full — indicates thet & iegal program command or guery could not be executed bacause the media was full;
for example, there is no room on the disk. The definition of what constitutes a full media is device-specific.

—255 Directory full — Indicetes that a legal progrem command or query could not be executed beceuse the media
directory was full. The definition of what constitutes a full media directory is device-specific.

14-9

SCPI Error Messages
Execution Errors

Table 14-2. SCP) Exscution Ervors (continved)

Erver Number Erver Dessription

-256 Fle name not found — Indicates thet a legel program command or guery could no’ be executed becauss the file
name on the device media was not found; for exempie, an attempt was made 1c ead or copy & nonexstent file.
The definition of what constwtes a file not being found s device-specific.

—257 File name error — Indicates that & legal program command or query could not be executed because the file name
on the device media was in error; for exampls, an attempt was made to copy to & uupiicate file name The
definition of what constitutes e file name error i device-3pecific

-258 Medis protected — Indicates that a legal program command or query could not be executed because the media
was protected; for example, the write-protect tsh on a disk was present. The definition of what canstitutes
protected medis is dewvice-specific.

—260 Expression error — Indicates that an expression program data element related error occurred. This error message
should be used when the device cannot detect the mare specific errors described for srrors —261 through —269.

~-261 Math error in expression — indicates that & syntactically lega! expression program cata element could not be
gxecuted due to a math error; for example, 8 divide-by-zero was attempted. The aufinition of math error is
device-specific.

=270 Macro error — Indicates that @ macro-related execution error occurred. This error message shouid be ysed when
the device cannot detect the more specific errors —271 through —278.

- Macro syntax error — Indicates that a syntactically legal macro program data seguence couid not be exscuted due
1o & syntex error within the macro definition.

=272 Macro execution error — indicates that a syntactcally iegal macro program data seguence could not be executed
due to same error in the macro definition.

=273 lllegel macro label — Indicates thet the macro label defined in the *DMC commana was a legal string syntax, but
could not be accepted by the device; for example, the lsbel was too iong, the sam= a3 @ common command header,
or contained invalid header syntax.

274 Macro parameter error — Indicates that the macro definition improperly used 8 macrc parameter placeholdar.

=275 Macro definition too long — Indicates that a syntactically legal macro progrem dats sequence could not be exscuted
because the stnng or block contents were too long for the device to handle.

—278 Macro recursion error — Indicates that 8 syntactically legel macro program data sequence could not be executed

because the device found it to be recursive.

14-10

SCPI Error Messages
Execution Errors

Tahle 14-2. SCPI Execution Errors (continved)

Ervor Hamber Error Description

=21 Macro redefinmion not aliowed — Indicates that a syntactically legal macro isbel in the *DMC command couid not
be exscuted because the macro label was siready defined.

-278 Msero header not found — indicates thet e syntactically lagal macro lshel in the *GMC? query couid not be
sxecuted bacause the header was not previously defined.

--280 Program error — indicates that a downloaded progrem-related execution error occurred. This error message should
be used when the device cannot detect the mare spacific errors —281 through —288. A downlosded program is
used to add slgorithmic capability 10 8 device. The syntax used in the program and the mechanism for
downleading & program s device-specific.

-8 Cannat crests program — Indicates that an attempt to create a program was unsuccessful. One reason for failure
might include not enough memaory.

—-282 lllegal program name — The name used to refersnce a program was invalid; for exampie, redefining an existing
progrem, deleting 8 nonexistent program, or in genera!, referencing 8 nonexistent program.

—283 iliegal variabls name — An attempt was made to reference 8 nonexistent variable in @ program.

—284 Program currently running — Certain operations dealing with programs may be illegel while the program is running;
for example, deleting @ running progrem might not be possible.

—285 Program syntax erar — Indicates that 8 syntex error appears in a downloaded program. The syntax used when
parsing the downloaded program is device-specific.

—286 Program runtime error

-290 Memory use error — Indicates that a user request has dirsctly or indirectly caused an error reiated 10 memory of
data_handies {this s not the same as "bad® memaryj.

—-291 Qut of memory

—292 Referenced namé does not exist

-293 Referenced name aiready exists

—294 incampatible type — Indicates that the type or structure of 8 memory item is inadequate.

14-11

| Device-Specific Errors

An error/event number in the range —399 to —-300 or | 10 32767 indicates
that the instrument has detected an error which is not 4 command error, a
query error, or an execution error. It indicates that some device operations
did not properly complete, possibly due to an abnormal hardware or firmware
condition. These codes are aiso used for self-test response errors. The
occurrence of any error in this class should cause the device-specific error bit
(bit 3) in the event status register to be set.

The meaning of positive error codes is device-dependent and may be
enumerated or bit mapped; the error message string for oositive error codes
is not defined by SCPI and available to the device designer. Note that the
string is not optional; if the designer does not wish to impiement a string

for a particular error, the null string should be sent (for ¢xample, 42.”7).

The occurrence of any error in this class should cause 1he device-specific
error bit (bit 3) in the event status register to be set. Events that generate
device-specific errors shall not generate command errors. execution errors, or
query errors; see the other error definitions in this section.

14-12

SCP! Error Messages
Device-Specific Errars

Table 14.3. SCPI Device-Specific Errors

Ervar Mzmber Error Description
—300 Device-specific error — This fs the gensric device-dependent error for devices that cannot detect more specific errors.
This code indicates only that a Device-Dependent Error has occurred.
—310 System error — indicetes that some ervor, termed “systeme error” by the davice, has occurred. This cade i
device-dependent.
-3n Memory srror — Indicates that an error was detected in the device's memory. The scope of this error is
device-dependent.
-2 PUD memory lost — Indicates that the protected user date saved by the ®*PUD command has been (ost.
R -313 Calibration memory lost — Indicates that nonvolatile cafibration data used by the *CAL? command hes been lost.
-314 Save/racall memory lost - indicates that the nonvolatile date saved by the *SAV? command has heen lost.
=315 Configuration memory lost — Indicatas that nonvoigtile configuration date saved by the device has been lost. The

meaning of this error is device-specific.

—330 Self-test failed

—350 Queue averflow — A specific code entered into the quaﬁe in lisu of the code that caused the error. This code
indicates that there is no room in the queue and an error occurred but was not recorded.

— 360 Communication error — This is the generic communication error for devices that cannot detect the more specific
errors —361 through —363.

- 361 Parity error in program messege — Parity bit not correct when data recsived, for example, on a senal port.

-362 Framing error in program message — A stop bit wes not detected when data was received, for example, on 8
serial port [for example, 8 baud rate rismatch).

—363 Input buffer overrun — Software or hardware input buffer on serial port overfiows with data caused by improper
or nonexistent pacing.

14-13

Query Errors

An error/event number in the range —499 to —400 indicaies that the output
queue control of the instrument has detected a problem with the message
exchange protocol. The occurrence of any error in this class shall cause the
query error bit (bit 2) in the event status register to be ser. These errors

correspond to message exchange protocol errors. One of the following is true:

e An attempt is being made to read data from the output queue when no
output is either present or pending;

e Data in the output queue has been lost.

Events that generate query errors shall not generate cornrmmand errors,
execution errors, or device-specific errors; see the other error definitions in
this section.

Table 14-4. SCPI Query Errors

Ervor Bumber Errer Deseriptien

—400 Query error — This is the generic query error for devices thet cannot detect more specric errors. This code
indicates oniy that & Query Error has occurred.

—410 Query INTERRUPTED - Indicates that a condition causing an INTERRUPTED Cuery error occurred; for
example, a query followed by DAB or GET before a response was completely sen:

—420 Query UNTERMINATED — :indicates that a condition causing an UNTERMINATED Query error occurred; for
exampie, the device was addressed 1o 1alk and an incomplete program message wes "ecaived.

—430 Query DEADLOCKED — indicates that a condition causing 2 DEADLOCKED Querv error occurrad; for examole,
both iput buffer and output buffer are full and the device cannot continue.

—440 Query UNSTERMINATED after indefinite response — Indicates that a query was recewved in the same program

message after an guery requesting an indefinite response was executed.

14-14

Index

Index

TS-obs. Formats , 1121

4,116
abbreviation
of commands, 10-8
copy, 11-31
ABORt, 10-4, 12-2
active controller
defined, 1-2
s Marker Off, 1115

Line, 11-18

‘Line. 1118

Add Min Point . 1118
address

HP-1B. 1-2
address capability. 1.7
AHI. 18
allocate memory, 1220
All Off , 11-16

Alt Sweep on OFF 1111

AM Delay, 116

cal, 11-24
Annotation, 11-33
ANNotation, 12-12, 12-13

Aperture, 11-26

AR, 116
arrays
correction, example program to up- and down-load, 8-40
data, corrected, 6-25
formatted, 6-27
measurement, 6-21 .
memory, corrected, 6-25
raw data, 6-22
ASCDATA

Index-2

example program, 8-24
ASCii, 4-7
ASCII encoding, 4-8
ATN, 1-4, 1-10
attention

’ plotter, 11-32
printer, 11-31

averaging, 6-25
averaging status register set, 5-19

(AVG), 11-26

in Limit | 11-19
binary encoding, 1-4, 4-8
<block>, 10-14
block data, 4-5
block length

definite, 4-5
indefinite, 4-6
block parameters, 10-14
blocks
definite and indefinite length, 4-5, 4-6, 10-14
boolean parameters, 10-12
s 116

Index-3

BafRee, 11-7
brackets

use of in this manual, 1-3. 10-15
branching, 10-5

B3 2 5 11-7
buffer

graphics, 7-5
buffering user graphics, 12-14
bus

data, 1-4

bus management cornmands, 1-6

byte order, 12-15

bytes per point. during data transfer, 6-9
byte swapping, 4-9

Cl.1-8
C10. 1-8
cliz, 1-8
Cc2. 1-8
C3, 1-8
C4,1-8
Cé6. 1-8
Cable:-Loss ., 11-23
cables, 1-2
(CAL), 11-22
CALCulate, 10-4, 12-3. 12-4, 12.5. 12-6. 12-7
Calibrate Cable . 11 23
calibration
full bard, 12-21
reflection, example program, 8-36
transmission. exampie program. 8-34
CALjbration. 10-4. 127
Cal Kit K 11-24

Cal on OFF, 11-27
case-sensitivity, 10-8
CATalog, 12-20
Center, 11-8
CH1AFWD, 6-22
CH1BFWD, 6-22
CHI1FDATA, 6-22
CHIRFWD, 6-22
CHISCORRI1, 6-24
CHISCORRZ2, 6-24
CH1SCORRS3, 6-24
CHI1SDATA, 8-22

Index-4

CHISMEM, 6-22
CH2AFWD, 6-22
CH2BFWD, 6-22
CH2FDATA, 6-22
CH2RFWD. 6-22
CH2SCORR1, 6-24
CH2SCORR2, 6-24
CH2SCORRS, 6-24
CH2SDATA, 6-22

character data, 4-4
character parameters, 10-11
circle

to draw, 12-14
clear graphics, 12-14
cleari i s, 5-4
{ w:, 11-34

, 11-35

OfE, 11-19
*CLS, 2-5, 5-4. 10-17
colons

use of, 10-5. 10-16
Colox, 11-31, 11-32
color of pen, 12-14
command abbreviation, 10-8
command errors, 14-3
command parser, 1-14
commands

bus management, 1-6

device, 1-6

IEEE 488.2, 10-17

overlapped, 2-3

SCP1 standard, 13-3

sequential, 2-2
command sending, 1-6
command tree, 10-3
commas

use of, 10-10, 10-16
condition register, 5-4
CONFigure, 12-8

Index-5

Configure VOL_RAM, 1128
configuring measuremnents. 8-5
nTec L 11-24

control
passing, 3-2
controller
active, defined, 1-2
defined. 1-2
multiple, 1-7
system, defined, 1-2
controller capabilities. 1-9
control lines, 1-4

Conversion Loss , 116
Copy A1l Files, 11-29
copy ﬁlg, 12-19

Copy File, 11-29

corrected data arrays, 6-25
corrected memory arrays, 6-25
CORRection, 12-21
correction arrays
up- and down-loading, example program. 8-40
COUPle. 11 11
coupling, 11-11
Current Size. 11-28
customized procedure
example program, 8 75

CW . 18
D data
block, 4-5

character, 4-4
expression, 4-4
numeric, 4-3
raw, 6-22
string, 4-4
DBata, 11-18
DATA, 12-31

data arrays
corrected, 6-25

Index-6

data rate, *-
data trace, 12-3
data transfer, 4-2

in ASCH, example program 8-24

in REAL format. examnple program. 8-27

using EGER format, examplie prograr.

data ¢ransfer size. 6-9

: f;nasave 127
definite length plocks. 4.5, 10-14

delay
electrical. 6-26

Delay

8-30

device commands, 1-6
device-specific errors, 14-12
device status register set, 3-15
DIAGnostic, 12-9

Dire Tilities. 11-30
cirect-read method of accessing registers, 5-6
discr:

£ & =, 11-9
DISPlay, 10-4, 12-12, 12-13, 12-14. 12-15
(DISPLAY). 1118
y window

pixel coordinates, 12-13

width and height, 12-14
Distance, 11-12

Dither, 11-13
double quotes
use of, 10-13
download an [BASIC program, 12-20
draw
circle. 12-14
line, 12-14
rectangle, 12-14
TRYDSK., 11-31

E2. 18

Edit Limit. 11-19
electrical delay, 6-26
Electrical Delay . 11-14
enable register. 5-5
encoding data, 4-2. 4-7

End Frequency . 11-19

End Limit , 11 19
end or identify
control line, 1-5
EQIL 1-5
error coefficient arrays, 6-23
error correction, 6-23
error messages, 12-30, 12-31, 14-2
error queue, 1-14
to query, 12-30, 12-31
eITOors
cormmand, 14-3
device-specific, 14-12
execution, 14-7
query, 14-14
3ESE, 10-17

Index-8

*ESE?, 5-18, 10-17
*ESR?, 5-18, 10-17
event register, 5-4
example program
ASCDATA., 8-24
FAST_PRT, 8-62
GRAPHICS, 8-76
INTDATA, 8-30
LEARNSTR, 8-49
LIMITEST, 8-9
LOADCALS, 8-40
MARKERS, 8-14
PASSCTRL, 8-59
PRINTPLT, 8-56
REFLCAL, 8-36
SAVERCL, 8-52
SETUP, 8-6
SRQ, 8-66
TRANCAL, 8-34
example programs, 8-2-81
execute an IBASIC command, 12-20
execution errors, 14-7
— expression data, 4-4

trigger, 11-12
External Sweep
trigger, 11-12
Ext:Ref, 11-12

F FAST_PRT exampie program, 8-62

Index-9

Elatness, 11-16
font

label, 12-14
FORMat, 10-4. 12-15
T) 11-21
fe¥., 11-29
urnerics, 10-11
formatted arrays. 6-27
formatting, 6-27

, 11-8

FREQuency, 12-23
frequency, stop

h to set, 10-10
2 cy Sweep , 11-11
from pane] keycodes, 9-2

Bull

display, 11-34
Band'Cal 6 11-22 1123

general status register model, 5-3
go to local. 1-10
Graph . 11-33
graphics

buffering, 12-14

to clear. 12-14

user. 7-2
GRAPhics. 1213, 12-14
GRAPHICS

example program. 8-75
graphics buffer. 7-5
Graticule ON off . 1120 11-33
GTL. 1-10

handshake lines, 1-4
HARD , 11-31
Hardoopy Address , 11-31
Hardeopy A1l 1135
hardcopy output

example program 8-56

Index-10

set clock, 11-35

HP-IB queues, 1-13 g
HP-IB requirements, 1-7

11-34
IBASIC program
to delete, 12-20
to download, 12-20
to load a value, 12-20
to select, 12-20
*IDN?, 10-17
[EEE 488.2 common commands, 10-17
IFC, 1-4, 1-10

implied mnemonics, 10-9

how identified in this manual, 1-3
implied variable, 10-9
implied variables

how identified in this manual. 1-3
indefinite block length, 4-6
indefinite length blocks, 10-14
[NITiate, 10-4, 12-17
INITIATE, 10-9
input queue, 1-13
Instrument BASIC, 8-2

INTDAT,
example program, 8-30

INTeger, 4-7

interface capabilities, 1-8

in ear, 1-4, 1-10

trigger, 11-12

11-28
internal measurement arrays, 6-21

Index-11

L L4.1-8
label
to draw, 12-14
label font, 12-14

Langiscape., 11-31
language, 12-16
LEO, 1-8
LEARNSTR

exampie program, 8-49
learn string, 12-30, 12-31
~example program, 8-49
Lewel, 11-10
LIMit, 12-3, 124
limitations

length of HP-IB cables, 1-7

number of devices, 1-7
LIMITEST

example program, 8-9
limit fail register set, 5-15
Liwmit Line, 11-18

Ejwit Line ON off, 1119
limit lines
example program, 8-9
@it Test on OFF, 1119

line
to draw, 12-14
Lin Mag A 11-2]
listener
defined. 1.2
List Trace Values. 11-33
LLO, 1-11
load a value in an [BASIC program. 12-20
LOADCALS

example program, 8-40
local lockout, 1-11
Log:Hag , 11-2]

IBASIC display, 11-34
lower-case

use of, 10-15
lower-case lettering, 10-8
*LRN?, 10-17
LRN?, 12-30, 12-31
LRNLong?, 12-30, 12-31

Index-12

MARKer, 12-4, 12-6

MARKER], 11-15 v

MARKERS

Measure Connector, 11-24
measurement

basic setup example program, 8-6
measurement arrays

internal, 6-21
measurements

to configure, 8-5
measurement setup

5 11-22, 11-24
status register set, 5-19
11-26
11-18
memory allocation, 12-20
Memory &rrays

Index-13

corrected, 6-25

message exchange, 1-13
messages
error. 12-30. 12-31. 14-2
message transfer scheme. 1.7
message window
clear current, 12-13
enablesdisable, 12-13
off, 12-13
remove user-defined, 12-13
user-defined, 12-13
Meters, 11-12
Hinimum , 11-26
MINimum, 10-10
Min - Limit K 11-19
Hin Search, 11-16
Hinute
set clock. 11-35
Hir Limit ON off 11-19

M —>Hax, 1116
>:Win, 1116
sz:;:synhul, 11-33

Mir: Table, 1133
MMEMory, 10-4. 12-18, 12-19
mnemonics

impilied. 10-9

implied. how identified in this manual, 1-3

Modity Size . 11.28
Monochrome, 11-31, 11-32
Month

set clock, 11-35
EiltiNptch, 11-17
Multi Peak, 11-17
ak Corr , 11-23

Multi Peak Threshold , 11.23
multiple commands. 10-7
multiple controller capability, 1-7

Index-14

NR1, 10-11
NR2, 10-11
NR3, 10-11

numeric data, 4-3
numeric formats, 10-11
numeric parameters, 10-10

offset and scale, 6-27

cal, 11-22
&<ON|OFF>, 10-12
*OPC, 2-4, 10-17
*OPC?, 24, 10-18 _
Operating Parameters:, 11-35
operational status register set, 5-20
*OPT?. 10-18
options, 10-18
OUTPut, 10-4, 12-19
output queue, 1-14
overlapped commands, 2-3

parallel poll, 1-11
parameters
block, 10-14
boolean, 10-12
character, 10-11
discrete, 10-11
numeric, 10-10
string, 10-13
parameter types, 10-10
parser

Index-15

cormmand, 1-14
pass control, 3-2
PASSCTRL
example program, 8-59
passing control. 3-2
axample program. 3-59
*PCB, 1-12, 10-18
pen. 11-32
move, 12-14
Phiase
format, 11-21
Phase Offaet , 11-14
pixel coordinates
display window, 12-13
plotting and printing
example program. 8-56
Polar
format, 11-21
Port Ext’s on OFF, 11-25

Portrait, il-31

Power K 116
POWer, 12-19, 12-25

PPC, 1-11
PPD, 1-11
PPE. 1-11
PPU, i-11
PRESET), 11-2. 12-30. 12-31
Printer Resolution. 11-32
printing and plotting

2xample program. ! 56
PRINTPLT

example program, 8-56
Print Width K 11.32
program

how to download, 12-20
PROGram, 10-4, 12-20
programming fundamentals, 1-8
programs

examples, 8-2-81
*PSC, 10-18

Pyr Bucep Range', 11-10

Index-16

Q query errors, 14-14

query response generation, 1-15
query the error queue, 12-30, 12-31
questionable status register set, 5-18
queue

error. 1-14

input, 1-13

output, 1-14
queues, 1-13
quotes

use of, 10-13

R, 116

Re, 11.7

ratio calculations, 6-23
raw data arrays, 6-22
readable ports, 12-11

format, 11-21
REAL, 4-7

recalling and saving
le program, 8-52

 ’_;:', 11-28
L 11-27

rectanglé
to draw, 12-14

Reference Level , 11-14

Reference Position, 11-14
REFLCAL
~example program, 8-36
Heflectiom, 11-6

cal, 11-22
reflection calibration

example program, 8-36
Refl Port Extension, 11-25
register model

status, 5-3
registers, 5-2

how to use, 5-6
register sets, 5-10
remote enable, 1-11

control line, 1-56

Index-17

Re—SmState 11-27

cal 11.22

RLI1, 1-8

RQ@S, 1-12
*RST, 2-5, 10-18
Run 11.34

Sawe ASCII, 1127
Save AUTOST , 11-28
G&aﬁ:, 11-27

Save rogram , 11-28
SAVERCL
example program, 8-52

Save:State, 11-27
saving and recalling
example program. 3-52

S 1114
scale and offset. 6 27
Scale/Div, 1114
SCP1
defined, 10-2
SCPI conformance, 13-2
SCPI errors, 14-2
SCPI standard commands, 13-3
sSDC, 1-12
Search left 11-17

Search Off, 11-17

Search right 11-17
select a program. 12-20

semicolons

Index-18

use of, 10-7, 10-16
sending commands, 1-6
SENSe, 10-4, 12-21, 12-22, 12-23
sequential commands, 2-2
serial poll, 1-12
service request
control line, 1-5
service request method accessing registers, 5-7

setting the stop frequency, 10-10
SETUP

example program, 8-6
SH1, 1-8

single qhotes
use of, 10-13
size

disk, 11-28
trace data transfer, 6-9

softkey labels
user-defined, 12-13
SOURce. 10-4, 12-25
source menu, 11-12
spaces
use of. 10-10, 10-16
Span. , 11-8
SPD, 1-12
SPE. 1-12

example program, 8-65
standard event status register, 5-3
stardard event status register set, 5-17

Index-19

Staxrt, 11-8
copy, 11-31

Statdeticz, [1-16

STATus, 10-5, 12-25, 12-26, 12-27, 12-28
PRESet Settings, 5-21

status byte register, 5-3, 5-12

status register model. 5-3

status registers, 5-2

*STB?, 10-19

Step, 11-34
Step, 118

Stop Distance , 11-12
stop frequency

how to set, 10-10
tep Pover, 11-10
<string>, 10-13
string data, 4-4
string parameters, 10-13
subsystems, 10-3
SWAPped, 12-15

Séeep - Time, 11-11
Sweep Time AUTO Man, 11-1!
SWR. 11-21
synchronizing, 2-2
syntax summary and conventions, 10-15
SYSTem, 10-5. 12-29. 12-30. 12-31
System Bandwidth . 126
System Config 6 1135
system controller

defined, 1-2
Systew Controller, 11-34

(SYSTEM OPTIONS), 1134

Index-20

T T8, 1-8
take control talker, 1-12

talker
defined. 1-2
11-34
11-17
11-17
TCT, 1-12
TEO, 1-8

11-19
11-20, 11-33

12-31
e, 11-33

trace data transfer size, 6-9

trace math, 12-7

6-26

11-17

TRANCAL
example program, 8-34
transferring data, 4-2
using INTEGER format, example program, 8-30
transferring data in ASCI
example program, 8-24
transferring data in REAL format
example program, 8-27
transform, 6-26
transition registers, 5-4
transmission calibration
example program, 8-34
Transmisen, 11-6
cal, 11-22
Trans Por
*TRG, 10-19
trigger, 12-17
Ta 11-12
TRIGger, 10-5, 12-32
: e, 11-12

“Extension , 11-25

Index-21

U Uppexr:
IBASIC display, 11-34

upper-case
use of, 10-15

upper-case iettering, 10-8

s med, 11-25

user-defined message, 12-13

user graphics

example program, 8-75
using graphics, 7-2

V variable
implied, 10-9
variables
implied, how identified in this manual, 1-3

Velocity Factor , 11-23, 1125
: A Porch, 11-36
Vertical Frnt Porch, 11-36
Volatile RAM Disk, 11-28

W *WAL 2.4, 8-6, 10-19
Wide:, 11-26
WINDow, 12-13. 12-14, 12-15
WINDow !, 7-2
WINDow10, 7-2
WINDow2, 7-2
window geometry. 7-4
window queries. 7 -4

X X. 17
Xon/Xaoff 11-31
X/Y, 117

Y Y, 117
Y-Axis Lbl.DN off, 11.20
T=Axie Lbl rel 4BS, 1120

__set clock, 11-35
WK, 117

Index-22

7 11-24
Zeroing
auto, 11-25, 12-7
manual, 11-25

Index-23

